6,316 research outputs found
Analysis of the Brinkman-Forchheimer equations with slip boundary conditions
In this work, we study the Brinkman-Forchheimer equations driven under slip
boundary conditions of friction type. We prove the existence and uniqueness of
weak solutions by means of regularization combined with the Faedo-Galerkin
approach. Next we discuss the continuity of the solution with respect to
Brinkman's and Forchheimer's coefficients. Finally, we show that the weak
solution of the corresponding stationary problem is stable
SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods
In the last few years thousands of scientific papers have investigated
sentiment analysis, several startups that measure opinions on real data have
emerged and a number of innovative products related to this theme have been
developed. There are multiple methods for measuring sentiments, including
lexical-based and supervised machine learning methods. Despite the vast
interest on the theme and wide popularity of some methods, it is unclear which
one is better for identifying the polarity (i.e., positive or negative) of a
message. Accordingly, there is a strong need to conduct a thorough
apple-to-apple comparison of sentiment analysis methods, \textit{as they are
used in practice}, across multiple datasets originated from different data
sources. Such a comparison is key for understanding the potential limitations,
advantages, and disadvantages of popular methods. This article aims at filling
this gap by presenting a benchmark comparison of twenty-four popular sentiment
analysis methods (which we call the state-of-the-practice methods). Our
evaluation is based on a benchmark of eighteen labeled datasets, covering
messages posted on social networks, movie and product reviews, as well as
opinions and comments in news articles. Our results highlight the extent to
which the prediction performance of these methods varies considerably across
datasets. Aiming at boosting the development of this research area, we open the
methods' codes and datasets used in this article, deploying them in a benchmark
system, which provides an open API for accessing and comparing sentence-level
sentiment analysis methods
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
Enhancements in nocturnal surface ozone at urban sites in the UK
Analysis of diurnal patterns of surface ozone (O3) at multiple urban sites in the UK shows the occurrence of prominent nocturnal enhancements during the winter months (November–March). Whilst nocturnal surface ozone (NSO) enhancement events have been observed at other locations, this is the first time that such features have been demonstrated to occur in the UK and the second location globally. The observed NSO enhancement events in the UK were found to be so prevalent that they are clearly discernible in monthly diurnal cycles averaged over several years of data. Long-term (2000–2010) analysis of hourly surface ozone data from 18 urban background stations shows a bimodal diurnal variation during the winter months with a secondary nighttime peak around 0300 hours along with the primary daytime peak. For all but one site, the daily maxima NSO concentrations during the winter months exceeded 60 μg/m3 on >20 % of the nights. The highest NSO value recorded was 118 μg/m3. During the months of November, December, and January, the monthly averaged O3 concentrations observed at night (0300 h) even exceeded those observed in the daytime (1300 h). The analysis also shows that these NSO enhancements can last for several hours and were regional in scale, extending across several stations simultaneously. Interestingly, the urban sites in the north of the UK exhibited higher NSO than the sites in the south of the UK, despite their daily maxima being similar. In part, this seems to be related to the sites in the north typically having lower concentrations of nitrogen oxides
F-theory on Genus-One Fibrations
We argue that M-theory compactified on an arbitrary genus-one fibration, that
is, an elliptic fibration which need not have a section, always has an F-theory
limit when the area of the genus-one fiber approaches zero. Such genus-one
fibrations can be easily constructed as toric hypersurfaces, and various
and models are presented as examples. To each
genus-one fibration one can associate a -function on the base as well as
an representation which together define the IIB axio-dilaton
and 7-brane content of the theory. The set of genus-one fibrations with the
same -function and representation, known as the
Tate-Shafarevich group, supplies an important degree of freedom in the
corresponding F-theory model which has not been studied carefully until now.
Six-dimensional anomaly cancellation as well as Witten's zero-mode count on
wrapped branes both imply corrections to the usual F-theory dictionary for some
of these models. In particular, neutral hypermultiplets which are localized at
codimension-two fibers can arise. (All previous known examples of localized
hypermultiplets were charged under the gauge group of the theory.) Finally, in
the absence of a section some novel monodromies of Kodaira fibers are allowed
which lead to new breaking patterns of non-Abelian gauge groups.Comment: 53 pages, 9 figures, 6 tables. v2: references adde
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
Spectroscopic analysis of finite size effects around a Kondo quantum dot
We consider a simple setup in which a small quantum dot is strongly connected
to a finite size box. This box can be either a metallic box or a finite size
quantum wire.The formation of the Kondo screening cloud in the box strongly
depends on the ratio between the Kondo temperature and the box level spacing.
By weakly connecting two metallic reservoirs to the quantum dot, a detailed
spectroscopic analysis can be performed. Since the transport channels and the
screening channels are almost decoupled, such a setup allows an easier access
to the measure of finite-size effects associated with the finite extension of
the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200
The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer
Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
The fidelity of dynamic signaling by noisy biomolecular networks
This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics (CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
