65 research outputs found

    Probabilistic Model Checking for Continuous-Time Markov Chains via Sequential Bayesian Inference

    Get PDF
    Probabilistic model checking for systems with large or unbounded state space is a challenging computational problem in formal modelling and its applications. Numerical algorithms require an explicit representation of the state space, while statistical approaches require a large number of samples to estimate the desired properties with high confidence. Here, we show how model checking of time-bounded path properties can be recast exactly as a Bayesian inference problem. In this novel formulation the problem can be efficiently approximated using techniques from machine learning. Our approach is inspired by a recent result in statistical physics which derived closed form differential equations for the first-passage time distribution of stochastic processes. We show on a number of non-trivial case studies that our method achieves both high accuracy and significant computational gains compared to statistical model checking

    Nonlinear actuator fault detection for small-scale UASs

    Get PDF
    This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs

    Variable forgetting factors in Kalman filtering

    No full text

    Deep Learning for Object Tracking in 360 Degree Videos

    No full text
    corecore