628 research outputs found

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Serum microrna biomarkers for detection of non-small cell lung cancer

    Get PDF
    Non small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality world-wide and the majority of cases are diagnosed at late stages of disease. There is currently no cost-effective screening test for NSCLC, and the development of such a test is a public health imperative. Recent studies have suggested that chest computed tomography screening of patients at high risk of lung cancer can increase survival from disease, however, the cost effectiveness of such screening has not been established. In this Phase I/II biomarker study we examined the feasibility of using serum miRNA as biomarkers of NSCLC using RT-qPCR to examine the expression of 180 miRNAs in sera from 30 treatment naive NSCLC patients and 20 healthy controls. Receiver operating characteristic curves (ROC) and area under the curve were used to identify differentially expressed miRNA pairs that could distinguish NSCLC from healthy controls. Selected miRNA candidates were further validated in sera from an additional 55 NSCLC patients and 75 healthy controls. Examination of miRNA expression levels in serum from a multi-institutional cohort of 50 subjects (30 NSCLC patients and 20 healthy controls) identified differentially expressed miRNAs. A combination of two differentially expressed miRNAs miR-15b and miR-27b, was able to discriminate NSCLC from healthy controls with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 100% in the training set. Upon further testing on additional 130 subjects (55 NSCLC and 75 healthy controls), this miRNA pair predicted NSCLC with a specificity of 84% (95% CI 0.73-0.91), sensitivity of 100% (95% CI; 0.93-1.0), NPV of 100%, and PPV of 82%. These data provide evidence that serum miRNAs have the potential to be sensitive, cost-effective biomarkers for the early detection of NSCLC. Further testing in a Phase III biomarker study in is necessary for validation of these results. © 2012 Hennessey et al

    Anti-Hyperglycemic And Anti-Hyperlipidemic Potential Of A Polyherbal Preparation “Diabegon” In Metabolic Syndrome Subject With Type 2 Diabetes

    Get PDF
    Background: In the present study, “Diabegon” a poly-herbal preparation, with hypoglycemic activity, was evaluated for its preventive effect inmetabolic syndrome subjects with type 2 diabetes and also to reveal its side effects, on liver and kidney.Materials and Methods: Type 2 diabetic subjects with metabolic syndrome (N=58) were categorized on the basis of age and fasting blood glucose.The grouping was as follows: Group I (35-50 yrs), Group II (51-65 yrs), Group III >65 yrs, Group IV FBS<145.9, Group V FBS>145. Each group wasadministered 4 gm of diabegon daily. Blood glucose levels, lipid profile, liver and kidney function of the subjects were regularly monitored within 3months of interval to 18 months.Results: The reduction in fasting blood glucose level ranged from 12.3% (P<0.05) to 42% (P<0.001) after 18 month of therapy whereas in postprandial blood glucose, the decrease ranged from 28% (P<0.05) to 32% (P<0.05) after 18 month of therapy. Overall reductions in the individual parameters of the metabolic syndrome subjects were significantly higher in Group I. Cholesterol level decreased from 11% to 27.2% (P<0.001), triglyceride levels decreased from 24% to 55%, VLDL and LDL levels reduced by 60% & 54% respectively after 18 months of therapy. The HDL-C level increased in all groups. Moreover, diabegon administration for 1.5 years exhibited no alteration in liver and kidney function tests, which indicate its non-toxicity.Conclusion: Our study suggests that diabegon could be included as a preventive treatment in metabolic syndrome subjects with type 2 diabetesespecially for long term treatment as it efficiently shows anti-hyperglycemic and anti-lipidemic effects with no adverse impacts on the liver and kidney.Key words: Metabolic syndrome, Type 2 diabetes, Diabegon, Polyherbal preparation

    Starch-based nanoformulation of rhizobium enhancing growth, nodulation, and yield in black gram

    Get PDF
    Black gram (Vigna mungo (L.) Hepper) is a significant pulse crop due to its nutritional value and productivity within the Indian subcontinent. Pulses possess the inherent ability to fix atmospheric nitrogen into the soil through a symbiotic association with the Rhizobium, a genus of essential soil microorganisms that facilitate nitrogen fixation in legumes. However, conventional biofertilizers encounter challenges related to limited shelf life, reduced cellular viability, and inefficacy of carriers. This research investigates the encapsulation of Rhizobium using starch nanoparticles and sodium alginate to mitigate these drawbacks. The nanoformulations was assessed, with a mean droplet size and polydispersity index of 292 nm and 0.056, respectively. FTIR analysis confirmed the successful incorporation of all functional components. SEM imaging illustrated a uniform distribution of the formulation over the seed coat. Release kinetics displayed an initial burst release, followed by controlled and sustained release phases. The nanoformulations effectively protects the cells from adverse conditions in soil with different pH levels. A pot culture experiment with Black gram was conducted to evaluate the efficacy of the nanoformulations. The findings indicated significant enhancements in growth parameters, nodulation, and yield characteristics compared to the control and conventional treatments. The highest dosage of nanoformulation at the rate of 15ml/8Kg (T6) consistently surpassed other treatments, demonstrating improved shoot and root lengths, chlorophyll content, soluble protein, and enzyme activities. Treatment T6 gains the highest nodule count (approx. 100/plant) and maximized yield parameters. This investigation highlights the potential of Rhizobium nanoformulations in promoting plant growth, nodulation, and yield in black gram. It offers a promising strategy for sustainable agricultural practices and addresses the limitations of traditional biofertilizers

    Defects in Meiotic Recombination Delay Progression Through Pachytene in Tex19.1-/- Mouse Spermatocytes

    Get PDF
    Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13 mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1 −/− . The appearance of early recombination foci is delayed in Tex19.1 −/− spermatocytes during leptotene/zygotene, but some Tex19.1 −/− spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1 −/− spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1 −/− testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect

    <em>Enterococcus faecalis</em> Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells

    Get PDF
    Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression

    The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia

    Get PDF
    Expression of the MECOM (also known as EVI1) proto-oncogene is deregulated by chromosomal translocations in some cases of acute myeloid leukemia (AML) and is associated with poor clinical outcome. Here, through transcriptomic and metabolomic profiling of hematopoietic cells, we reveal that EVI1 overexpression alters cellular metabolism. A screen using pooled short hairpin RNAs (shRNAs) identified the ATP-buffering, mitochondrial creatine kinase CKMT1 as necessary for survival of EVI1-expressing cells in subjects with EVI1-positive AML. EVI1 promotes CKMT1 expression by repressing the myeloid differentiation regulator RUNX1. Suppression of arginine-creatine metabolism by CKMT1-directed shRNAs or by the small molecule cyclocreatine selectively decreased the viability, promoted the cell cycle arrest and apoptosis of human EVI1-positive cell lines, and prolonged survival in both orthotopic xenograft models and mouse models of primary AML. CKMT1 inhibition altered mitochondrial respiration and ATP production, an effect that was abrogated by phosphocreatine-mediated reactivation of the arginine-creatine pathway. Targeting CKMT1 is thus a promising therapeutic strategy for this EVI1-driven AML subtype that is highly resistant to current treatment regimens. Keywords: AML; RUNX1; CKMT1; cyclocreatine; arginine metabolismNational Cancer Institute (U.S.) (NIH 1R35 CA210030-01)Stand Up To CancerBridge ProjectNational Cancer Institute (U.S.) (David H. Koch Institute for Integrative Cancer Research at MIT. Grant P30-CA14051

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases
    corecore