5 research outputs found
DeadEasy Mito-Glia: Automatic Counting of Mitotic Cells and Glial Cells in Drosophila
Cell number changes during normal development, and in disease (e.g., neurodegeneration, cancer). Many genes affect cell number, thus functional genetic analysis frequently requires analysis of cell number alterations upon loss of function mutations or in gain of function experiments. Drosophila is a most powerful model organism to investigate the function of genes involved in development or disease in vivo. Image processing and pattern recognition techniques can be used to extract information from microscopy images to quantify automatically distinct cellular features, but these methods are still not very extended in this model organism. Thus cellular quantification is often carried out manually, which is laborious, tedious, error prone or humanly unfeasible. Here, we present DeadEasy Mito-Glia, an image processing method to count automatically the number of mitotic cells labelled with anti-phospho-histone H3 and of glial cells labelled with anti-Repo in Drosophila embryos. This programme belongs to the DeadEasy suite of which we have previously developed versions to count apoptotic cells and neuronal nuclei. Having separate programmes is paramount for accuracy. DeadEasy Mito-Glia is very easy to use, fast, objective and very accurate when counting dividing cells and glial cells labelled with a nuclear marker. Although this method has been validated for Drosophila embryos, we provide an interactive window for biologists to easily extend its application to other nuclear markers and other sample types. DeadEasy MitoGlia is freely available as an ImageJ plug-in, it increases the repertoire of tools for in vivo genetic analysis, and it will be of interest to a broad community of developmental, cancer and neuro-biologists
An efficient tool for genetic experiments: agarose gel image analysis
Repeatability of many genetic analysis experiments can be improved by the application of signal processing and image-processing tools. Most of the experiments in genetics result in some sort of digital signal or image patterns that are subjectively analyzed by the geneticists. This paper presents an example project where image-processing techniques are applied for automation of most of the routine processes of agarose gel image analysis. Result of applying this program has shown that the time taken for the analysis has been reduced by about 70% and the result is reproducible. © 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved
Automatic analysis of agarose gel images
Motivation: Automatic tools to speed up routine biological processes are very much sought after in bio-medical research. Much repetitive work in molecular biology, such as allele calling in genetic analysis, can be made semi-automatic or task specific automatic by using existing techniques from computer science and signal processing. Computerized analysis is reproducible and avoids various forms of human error. Semi-automatic techniques with an interactive check on the results speed up the analysis and reduce the error. Results: We have successfully implemented an image processing software package to automatically analyze agarose gel images of polymorphic DNA markers. We have obtained up to 90% accuracy for the classification of alleles in good quality images and up to 70% accuracy in average quality images. These results are obtained within a few seconds. Even after subsequent interactive checking to increase the accuracy of allele classification to 100%, the overall speed with which the data can be processed is greatly increased, compared to manual allele classification
