27 research outputs found
Chromosomal aberrations in peripheral lymphocytes from male native miners working in the Peruvian Andes
Influence of combined dust reducing carpet and compact air filtration unit on the indoor quality of a classroom
Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of these interventions in actual operating classrooms. An exploratory study was performed to evaluate a combination of the two systems in a primary school. Measurements of PM-10 and PM-2.5 were performed by filter sampling and aerosol spectrometry. Other IAQ parameters included black smoke (BS), volatile organic compounds (VOC), nitrogen dioxide (NO2) and formaldehyde. Both interventions were introduced in one classroom during one week, using another classroom as a reference. In a second week the interventions were moved to the other classroom, using the first as a reference (cross-over design). In three remaining weeks the classrooms were compared without interventions. Indoor IAQ parameters were compared to the corresponding outdoor parameters using the indoor/outdoor (I/O) ratio. When the classrooms were occupied (teaching hours) interventions resulted in 27-43% reductions of PM-10, PM-2.5 and BS values. During the weekends the systems reduced these levels by 51-87%. Evaluations using the change in I/O ratios gave comparable results. Levels of VOC, NO2 and formaldehyde were rather low and a contribution of the interventions to the improvement of these gas phase IAQ parameters was inconclusive.crosscheck: This document is CrossCheck deposited
related_data: Supplementary Information
copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal
copyright_licence: The accepted version of this article will be made freely available after a 12 month embargo period
history: Received 24 September 2014; Accepted 31 October 2014; Accepted Manuscript published 31 October 2014; Advance Article published 7 November 2014; Version of Record published 11 February 2015status: publishe
Commentary on physicians’ satisfaction with providing buprenorphine treatment by Knudsen et al.
The role of environmental factors in promoting and limiting biological invasions in South Africa
CITATION: Wilson, J.R. et al. 2020. The role of environmental factors in promoting and limiting biological invasions in South Africa. In: Biological Invasions in South Africa. van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R. and Zengeya, T.A. (eds.). Springer, Cham. pp. 355-385. doi:10.1007/978-3-030-32394-3_13The original publication is available at https://link.springer.com/book/10.1007/978-3-030-32394-3This chapter provides an overview of the researchers and research initiatives relevant to invasion science in South Africa over the past 130 years, profiling some of the more recent personalities, particularly those who are today regarded as international leaders in the field. A number of key points arise from this review. Since 1913, South Africa has been one of a few countries that have investigated and implemented alien plant biological control on a large scale, and is regarded as a leader in this field. South Africa was also prominent in the conceptualisation and execution of the international SCOPE project on the ecology of biological invasions in the 1980s, during which South African scientists established themselves as valuable contributors to the field. The development of invasion science benefitted from a deliberate strategy to promote multi-organisational, interdisciplinary research in the 1980s. Since 1995, the Working for Water programme has provided funding for research and a host of practical questions that required research solutions. Finally, the establishment of a national centre of excellence with a focus on biological invasions has made a considerable contribution to building human capacity in the field, resulting in advances in all aspects of invasion science—primarily in terms of biology and ecology, but also in history, sociology, economics and management. South Africa has punched well above its weight in developing the field of invasion science, possibly because of the remarkable biodiversity that provided a rich template on which to carry out research, and a small, well-connected research community that was encouraged to operate in a collaborative manner.https://link.springer.com/chapter/10.1007%2F978-3-030-32394-3_13Publisher’s versio
Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter
Quantification of Hg excretion and distribution in biological samples of mercury-dental-amalgam users and its correlation with biological variables
In Vivo Effects of Pichia Pastoris-Expressed Antimicrobial Peptide Hepcidin on the Community Composition and Metabolism Gut Microbiota of Rats
Hepcidin, one kind of antimicrobial peptides, is one of the promising alternatives to antibiotics with broad spectrum of antimicrobial activity. Hepcidins cloned from different kinds of fishes have been produced using exogenous expression systems, and their in vitro antimicrobial effects have been verified. However their in vivo effects on gut microbiota and gut health of hosts remain unclear. Here we performed a safety study of hepcidin so that it can be used to reduce microbial contaminations in the food and feed. In this study, Pichia pastoris-expressed Pseudosciaena crocea hepcidin (PC-hepc) was first assessed by simulated digestion tests and then administered to male and female Sprague-Dawley (SD) rats in different concentrations. Subchronic toxicity testing, high throughput 16S rRNA sequencing of gut microbiota, and examinations on gut metabolism and permeability were conducted. The results showed PC-hepc could be digested in simulated intestinal fluid but not in simulated gastric fluid. PC-hepc had no adverse effects on general health, except causing increase of blood glucose (still in the normal value range of this index) in all trial groups of female rats and intestinal inflammation in HD group of female rats. Community composition of gut microbiota of female MD and HD groups shifted compared with control group, of which the decrease of genus Akkermansia might be related to the increase of blood glucose and intestinal inflammation. Significant increase of fecal nitroreductase activity was also observed in female MD and HD groups. Our results suggest the uses of exogenous PC-hepc in normal dosage are safe, however excess dosage of it may cause intestinal disorder of animals
