27 research outputs found
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
Time- and Dose-Dependent Induction of HSP70 in Lemna minor Exposed to Different Environmental Stressors
The objective of this study was to examine the influence of different stressors, including cadmium (heavy metal), anthracene (polycyclic aromatic hydrocarbon—PAH) and chloridazon (herbicide), on population growth and biosynthesis of cytoplasmic HSP70 in Lemna minor (duckweed) in short (4 h)- and long (7 days)-term tests. A heat shock response was confirmed in Lemna exposed to high temperature: 35, 37.5, 40, or 42.5°C in short-term (4 h) treatments. The chemicals tested stimulated the biosynthesis of the cytoplasmic HSP70 protein in a concentration-dependent way (0.5–5 μM), higher in fronds exposed to lower doses of stressors. Additionally, production of HSP70 was greater after 4 h of incubation than after 7 days. The results suggest that HSP70 could be applied as a non-specific and sensitive detector of stress induced by different chemicals at concentrations below those that produce the type of response observed in classical cytotoxicity tests, such as growth inhibition
Identifying Experimental Tool Use Through Confocal Microscopy
Characterizing use-wear traces quantitatively is a valid way to improve the capacity of use-wear analysis. This aim has been on specialists’ agenda since the beginning of the discipline. Micropolish quantification is especially important, as this type of trace allows the identification of worked materials. During the last decade, confocal microscopy has been used as a promising approach to address this question. Following previous efforts in plant microwear characterization (Ibáñez et al. Journal of Archaeological Science, 48, 96–103, 2014; Journal of Archaeological Science, 73, 62–81, 2016), here we test the capacity of the method for correctly grouping experimental tools used for working eight types of materials: bone, antler, wood, fresh hide, dry hide, wild cereals, domestic cereals, and reeds. We demonstrate, for the first time, that quantitative texture analysis of use-wear micropolish based on confocal microscopy can consistently identify tools used for working different contact materials. In this way, we are able to move toward using texture analysis as part of the standard functional analysis of prehistoric instruments.This study is part of the projects HAR2016-74999-P, HAR2015-68566-P, and HAR2016-81971-REDT funded by the Spanish Ministerio de Ciencia, Innovación y Universidades.Peer reviewe
Functional Redundancy of Linuron Degradation in Microbial Communities in Agricultural Soil and Biopurification Systems
The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade
International audienceNever-smokers and never-drinkers patients (NSND) suffering from oral squamous cell carcinoma (OSCC) are epidemiologically different from smokers drinkers (SD). We therefore hypothesized that they harbored distinct targetable molecular alterations.PATIENTS AND METHODS:Data from The Cancer Genome Atlas (TCGA) (discovery set), Gene Expression Omnibus and Centre Léon Bérard (CLB) (3 validation sets) with available gene expression profiles of HPV-negative OSCC from NSND and SD were mined. Protein expression profiles and genomic alterations were also analyzed from TCGA, and a functional pathway enrichment analysis was performed. Formalin-fixed paraffin-embedded (FFPE) samples from 44 OSCC including 20 NSND and 24 SD treated at CLB were retrospectively collected to perform targeted-sequencing of 2,559 transcripts (HTG EdgeSeq system), and CD3, CD4, CD8, IDO1 and PD-L1 expression analyses by immunohistochemistry (IHC). Enrichment of a six-gene interferon-γ signature of clinical response to pembrozulimab (PD-1 inhibitor) was evaluated in each sample from all cohorts, using the single sample gene set enrichment analysis method. : A total of 854 genes and 29 proteins were found to be differentially expressed between NSND and SD in TCGA. Functional pathway analysis highlighted an overall enrichment for immune-related pathways in OSCC from NSND, especially involving T-cell activation. Interferon-γ response and PD1 signaling were strongly enriched in NSND. IDO1 and PD-L1 were overexpressed and the score of response to pembrolizumab was higher in NSND compared to SD, although the mutational load was lower in NSND. IHC analyses in the CLB cohort evidenced IDO1 and PD-L1 overexpression in tumor cells that was associated with a higher rate of tumor-infiltrating T-cells in NSND compared to SD. The main biological and actionable difference between OSCC from NSND and SD lies in the immune microenvironment, suggesting a higher clinical benefit of PD-L1 and IDO1 inhibition in OSCC from NSND
Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece
HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs
Reprotoxicity of the Antifoulant Chlorothalonil in Ascidians: An Ecological Risk Assessment
Chlorothalonil is a widely used biocide in antifouling paint formulation that replaces tin-based compounds after their definitive ban. Although chlorothalonil inputs into the marine environment have significantly increased in recent years, little is known about its effect on marine animals and in particular on their reproductive processes. In this line, the aim of the present study was to investigate the effects of chlorothalonil exposure on the gamete physiology, fertilization rate and transmissible damage to offspring in the marine invertebrate Ciona intestinalis (ascidians). To identify a possible mechanism of action of chlorothalonil, electrophysiological techniques were used to study the impact on oocyte membrane excitability and on the electrical events occurring at fertilization. The pre-exposure of spermatozoa and oocytes to chlorothalonil did not affect the fertilization rate but caused damage to the offspring by inducing larval malformation. The highest toxicity was observed when fertilization was performed in chlorothalonil solutions with the lowest EC50 value. In particular, it was observed that low chlorothalonil concentrations interfered with embryo development and led to abnormal larvae, whereas high concentrations arrested embryo formation. In mature oocytes, a decrease in the amplitudes of the sodium and fertilization currents was observed, suggesting an involvement of plasma membrane ion currents in the teratogenic mechanism of chlorothalonil action. The risk estimation confirmed that the predicted no-effect concentration (PNEC) exceeded the predicted effect concentration (PEC), thus indicating that chlorothalonil may pose a risk to aquatic species
