1,167 research outputs found

    Identification of activity peaks in time-tagged data with a scan-statistics driven clustering method and its application to gamma-ray data samples

    Get PDF
    The investigation of activity periods in time-tagged data-samples is a topic of large interest. Among Astrophysical samples, gamma-ray sources are widely studied, due to the huge quasi-continuum data set available today from the FERMI-LAT and AGILE-GRID gamma-ray telescopes. To reveal flaring episodes of a given gamma-ray source, researchers make use of binned light-curves. This method suffers several drawbacks: the results depends on time-binning, the identification of activity periods is difficult for bins with low signal to noise ratio. I developed a general temporal-unbinned method to identify flaring periods in time-tagged data and discriminate statistically-significant flares: I propose an event clustering method in one-dimension to identify flaring episodes, and Scan-statistics to evaluate the flare significance within the whole data sample. This is a photometric algorithm. The comparison of the photometric results (e.g., photometric flux, gamma-ray spatial distribution) for the identified peaks with the standard likelihood analysis for the same period is mandatory to establish if source-confusion is spoiling results. The procedure can be applied to reveal flares in any time-tagged data sample. The study of the gamma ray activity of 3C 454.3 and of the fast variability of the Crab Nebula are shown as examples. The result of the proposed method is similar to a photometric light curve, but peaks are resolved, they are statistically significant within the whole period of investigation, and peak detection capability does not suffer time-binning related issues. The method can be applied for gamma-ray sources of known celestial position. Furthermore the method can be used when it is necessary to assess the statistical significance within the whole period of investigation of a flare from an unknown gamma-ray source.Comment: 17 pages, 10 figures Accepted for publication in A&

    A multiwavelength view of BL Lacs neutrino candidates

    Get PDF
    The discovery of high-energy astrophysical neutrinos by IceCube kicked off a new line of research to identify the electromagnetic counterparts producing these neutrinos. Among the extragalactic sources, active galactic nuclei (AGN), and in particular Blazars, are promising candidate neutrino emitters. Their structure, with a relativistic jet pointing to the Earth, offers a natural accelerator of particles and for this reason a perfect birthplace of high energy neutrinos. A good characterisation of the spectral energy distribution (SED) of these sources can improve the understanding of the physical composition of the source and the emission processes involved. Starting from our previous works in which we assumed a correlation between the γ\gamma-ray and the neutrino flux of the BL Lacs of the 2FHL catalogue (detected by Fermi above 50GeV), we select those BL Lac in spatial correlation with the IceCube events. We obtain a sample of 7 sources and we start an observational campaign to have a better characterisation of the synchrotron peak. During the analysis of the data a new source has been added because of its position inside the angular uncertainty of a muon track event detected by IceCube. This source, namely TXS0506+056, was in a high-state during the neutrino event and we will consider it as benchmark to check the proprieties of the other sources of the sample during the related neutrino detection. We obtain a better characterisation of the SED for the sources of our sample. A prospective extreme Blazar, a very peculiar low synchrotron peak (LSP) source with a large separation of the two peaks and a \textit{twin} of TXS0506+056 come up. We also provide the γ\gamma-ray light curve to check the trend of the sources around the neutrino detection but no clears patterns are in common among the sources.Comment: 10 pages, 4 figures, accepted to MNRA

    Exploring the blazar zone in High Energy flares of FSRQs

    Full text link
    The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat spectrum radio quasars (FSRQ). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions for several FSRQs during flares. Among the others we investigate the SED of a peculiar flare of 3C 454.3, showing a remarkable hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one--zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone, and to locate the emitting region of gamma rays in the particular case in which gamma-ray spectra show neither absorption from the BLR, nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as source of seed photons for the External Compton. For FSRQs bright above 10 GeV, we where able to identify short periods lasting less than 1 day characterized by high rate of high energy gamma rays, and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnections events or turbulence in the flow.Comment: 20 pages, 8 figures, 6 tables, accepted for publication in Ap

    A new advanced railgun system for debris impact study

    Get PDF
    The growing quantity of debris in Earth orbit poses a danger to users of the orbital environment, such as spacecraft. It also increases the risk that humans or manmade structures could be impacted when objects reenter Earth's atmosphere. During the design of a spacecraft, a requirement may be specified for the surviv-ability of the spacecraft against Meteoroid / Orbital Debris (M/OD) impacts throughout the mission; further-more, the structure of a spacecraft is designed to insure its integrity during the launch and, if it is reusable, during descent, re-entry and landing. In addition, the structure has to provide required stiffness in order to allow for exact positioning of experiments and antennas, and it has to protect the payload against the space environment. In order to decrease the probability of spacecraft failure caused by M/OD, space maneuver is needed to avoid M/OD if the M/OD has dimensions larger than 10cm, but for M/OD with dimensions less than 1cm M/OD shields are needed for spacecrafts. It is therefore necessary to determine the impact-related failure mechanisms and associated ballistic limit equations (BLEs) for typical spacecraft components and subsys-tems. The methods that are used to obtain the ballistic limit equations are numerical simulations and la-borato-ry experiments. In order to perform an high energy ballistic characterization of layered structures, a new ad-vanced electromagnetic accelerator, called railgun, has been assembled and tuned. A railgun is an electrically powered electromagnetic projectile launcher. Such device is made up of a pair of parallel conducting rails, which a sliding metallic armature is accelerated along by the electromagnetic effect (Lorentz force) of a cur-rent that flows down one rail, into the armature and then back along the other rail, thanks to a high power pulse given by a bank of capacitors. A tunable power supplier is used to set the capacitors charging voltage at the desired level: in this way the Rail Gun energy can be tuned as a function of the desired bullet velocity. This facility is able to analyze both low and high velocity impacts. A numerical simulation is also performed by using the Ansys Autodyn code in order to analyze the damage. The experimental results and numerical simulations show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range

    Simulations of the X-ray imaging capabilities of the Silicon Drift Detectors (SDD) for the LOFT Wide Field Monitor

    Full text link
    The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionize the study of compact objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. The Large Area Detector (LAD), carrying an unprecedented effective area of 10 m^2, is complemented by a coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the sky potentially accessible to the LAD, to provide the history and context for the sources observed by LAD and to trigger its observations on their most interesting and extreme states. In this paper we present detailed simulations of the imaging capabilities of the Silicon Drift Detectors developed for the LOFT Wide Field Monitor detection plane. The simulations explore a large parameter space for both the detector design and the environmental conditions, allowing us to optimize the detector characteristics and demonstrating the X-ray imaging performance of the large-area SDDs in the 2-50 keV energy band.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-210, 201
    corecore