623 research outputs found
Vinylene-Linked Covalent Organic Frameworks by Base-Catalyzed Aldol Condensation
Two 2D covalent organic frameworks (COFs) linked by vinylene (−CH=CH−) groups (V‐COF‐1 and V‐COF‐2) are synthesized by exploiting the electron deficient nature of the aromatic s‐triazine unit of C3‐symmetric 2,4,6‐trimethyl‐s‐triazine (TMT). The acidic terminal methyl hydrogens of TMT can easily be abstracted by a base, resulting in a stabilized carbanion, which further undergoes aldol condensation with multitopic aryl aldehydes to be reticulated into extended crystalline frameworks (V‐COFs). Both V‐COF‐1 (with terepthalaldehyde (TA)) and V‐COF‐2 (with 1,3,5‐tris(p‐formylphenyl)benzene (TFPB)) are polycrystalline and exhibit permanent porosity and BET surface areas of 1341 m2 g−1 and 627 m2 g−1, respectively. Owing to the close proximity (3.52 Å) of the pre‐organized vinylene linkages within adjacent 2D layers stacked in eclipsed fashion, [2+2] photo‐cycloadditon in V‐COF‐1 formed covalent crosslinks between the COF layers.TU Berlin, Open-Access-Mittel - 2019DFG, 390540038, EXC 2008: UniSysCa
Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series
The effect of pore functionalisation (-I, -OH, -OCH3) on a series of topologically equivalent, interpenetrated metal-organic frameworks (MOFs) was assessed by both simulation and experiment. Counter-intuitively, a decreased affinity for CO2 was observed in the functionalised materials, compared to the non-functionalised material. This result highlights the importance of considering the combined effects of network topology and chemical functionality in the design of MOFs for enhanced CO2 adsorptionRavichandar Babarao, Campbell J. Coghlan, Damien Rankine, Witold M. Bloch, Gemma K. Gransbury, Hiroshi Sato, Susumu Kitagawa, Christopher J. Sumby, Matthew R. Hill and Christian J. Doona
Acridine functionalized covalent organic frameworks (COFs) as photocatalysts for metallaphotocatalytic C–N cross-coupling
Covalent organic frameworks (COFs) are structurally tuneable, porous and crystalline polymers constructed through the covalent attachment of small organic building blocks as elementary units. Using the myriad of such building blocks, a broad spectrum of functionalities has been applied for COF syntheses for broad applications, including heterogeneous catalysis. Herein, we report the synthesis of a new family of porous and crystalline COFs using a novel acridine linker and benzene-1,3,5-tricarbaldehyde derivatives bearing a variable number of hydroxy groups. With the broad absorption in the visible light region the COFs were applied as photocatalysts in metallaphotocatalytic C–N cross coupling. The fully β-ketoenamine linked COF showed the highest activity, due to the increased charge separation upon irradiation. The COF showed good to excellent yields for several aryl bromides, good recyclability and even catalysed the organic transformation in presence of green light as energy source
Covalent Organic Framework (COF) derived Ni-N-C Catalysts for Electrochemical CO<sub>2</sub> Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites
Electrochemical CO2 reduction is a potential approach to convert CO2 into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO2 electro-reduction to CO, and the single-site Ni-Nx motif is believed as the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni-Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency
Covalent Organic Framework (COF) derived Ni-N-C Catalysts for Electrochemical CO<sub>2</sub> Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites
Electrochemical CO2 reduction is a potential approach to convert CO2 into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO2 electro-reduction to CO, and the single-site Ni-Nx motif is believed as the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni-Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency
Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving
The advantages of two dimensional covalent organic framework membranes to achieve high flux have been demonstrated, but the capability of easy structural modification to manipulate the pore size has not been fully explored yet. Here we report the use of the Langmuir–Blodgett method to synthesize two ultrathin covalent organic framework membranes (TFP–DPF and TFP–DNF) that have a similar framework structure to our previously reported covalent organic framework membrane (TFP–DHF) but different lengths of carbon chains aiming to rationally control the pore size. The membrane permeation results in the applications of organic solvent nanofiltration and molecular sieving of organic dyes showed a systematic shift of the membrane flux and molecular weight cut-off correlated to the pore size change. These results enhanced our fundamental understanding of transport through uniform channels at nanometer scales. Pore engineering of the covalent organic framework membranes was demonstrated for the first time
Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction
An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency
Metal-assisted and solvent-mediated synthesis of two-dimensional triazine structures on gram scale
We thank the German Science Foundation (DFG) for financial support within the grants SFB 765 and SFB 658. M.F.G. and J.P.R. also acknowledge the support of the Cluster of Excellence “Matters of Activity. Image Space Material” funded by the DFG under Germany’s Excellence Strategy EXC 2025-390648296. Furthermore, A.T. acknowledges the DFG for funding within the project TH 1463/12-1. We thank Dr. Andreas Schäfer and Maiko Schulze for solid NMR experiments and we appreciate the effort of Vahid Ahmadi Soureshjani in MALDI-TOF experiments. We acknowledge M. Eng. Jörg M. Stockmann for operating the XPS instrument at the BAM and Prof. Stephanie Reich and Dr. Antonio Setaro for fruitful discussions. 2DTs-HRTEM and -EELS studies were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. R.A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016-79776-P (AEI/FEDER, UE) and from the European Union H2020 programs ETN projects “Graphene Flagship” (785219 and 881603), FLAG-ERA - Graphene (MICINN) GATES (PCI2018-093137) and “ESTEEM3” (823717).Peer reviewe
Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H2O2 Generation
Photocatalytic reduction of molecular oxygen is a promising route toward sustainable production of hydrogen peroxide (H2O2). This challenging process requires photoactive semiconductors enabling solar energy driven generation and separation of electrons and holes with high charge transfer kinetics. Covalent organic frameworks (COFs) are an emerging class of photoactive semiconductors, tunable at a molecular level for high charge carrier generation and transfer. Herein, we report two newly designed two-dimensional COFs based on a (diarylamino)benzene linker that form a Kagome (kgm) lattice and show strong visible light absorption. Their high crystallinity and large surface areas (up to 1165 m(2)center dot g(-1)) allow efficient charge transfer and diffusion. The diarylamine (donor) unit promotes strong reduction properties, enabling these COFs to efficiently reduce oxygen to form H2O2. Overall, the use of a metal-free, recyclable photocatalytic system allows efficient photocatalytic solar transformations.DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"EC/H2020/665501/EU/[PEGASUS]², giving wings to your career./PEGASUS-2EC/H2020/834134/EU/Water Forced in Hydrophobic Nano-Confinement: Tunable Solvent System/WATUSOEC/H2020/647755/EU/First principle molecular dynamics simulations for complex chemical transformations in nanoporous materials/DYNPO
Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate
Red Guipuzcoana de Ciencia, Tecnologia e Innovacion
OF218/2018
University of Basque Country
GIU 17/13
Basque Government
IT1005-16
IT1291-19
IT1310-19
Junta de Andalucia
FQM-394
Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE)
PGC2018-102052-A-C22
PGC2018-102052-B-C21
MAT2016-75883-C2-1-P
European Union (EU)
ESFIn this work, three isostructural metal-organic frameworks based on frst row transition metal ions
and 2-aminoisonicotinate (2ain) ligands, namely, {[M(μ-2ain)2]·DMF}n [MII=Co (1), Ni (2), Zn (3)], are
evaluated for their sensing capacity of various solvents and metal ions by monitoring the modulation
of their magnetic and photoluminescence properties. The crystal structure consists of an open
diamond-like topological 3D framework that leaves huge voids, which allows crystallizing two-fold
interpenetrated architecture that still retains large porosity. Magnetic measurements performed on 1
reveal the occurrence of feld-induced spin-glass behaviour characterized by a frequency-independent
relaxation. Solvent-exchange experiments lead successfully to the replacement of lattice molecules by
DMSO and MeOH, which, on its part, show dominating SIM behaviour with low blocking temperatures
but substantially high energy barriers for the reversal of the magnetization. Photoluminescence studied
at variable temperature on compound 3 show its capacity to provide bright blue emission under UV
excitation, which proceeds through a ligand-centred charge transfer mechanism as confrmed by timedependent DFT calculations. Turn-of and/or shift of the emission is observed for suspensions of 3 in
diferent solvents and aqueous solutions containing metal ions
- …
