119 research outputs found
PaperClip:rapid multi-part DNA assembly from existing libraries
Assembly of DNA ‘parts ’ to create larger constructs is an essential enabling technique for bioengineer-ing and synthetic biology. Here we describe a sim-ple method, PaperClip, which allows flexible assem-bly of multiple DNA parts from currently existing libraries cloned in any vector. No restriction en-zymes, mutagenesis of internal restriction sites, or reamplification to add end homology are required. Order of assembly is directed by double stranded oligonucleotides––‘Clips’. Clips are formed by lig-ation of pairs of oligonucleotides corresponding to the ends of each part. PaperClip assembly can be performed by polymerase chain reaction or by cell extract-mediated recombination. Once multi-use Clips have been prepared, assembly of at least six DNA parts in any order can be accomplished with high efficiency within several hours
Induction of apoptosis in myeloid leukaemic cells by ribozymes targeted against AML1/MTG8
The translocation (8;21)(q22;q22) is a karyotypic abnormality detected in acute myeloid leukaemia (AML) M2 and results in the formation of the chimeric fusion gene AML1/MTG8. We previously reported that two hammerhead ribozymes against AML1/MTG8 cleave this fusion transcript and also inhibit the proliferation of myeloid leukaemia cell line Kasumi-1 which possesses t(8;21)(q22;q22). In this study, we investigated the mechanisms of inhibition of proliferation in myeloid leukaemic cells with t(8;21)(q22;q22) by ribozymes. These ribozymes specifically inhibited the growth of Kasumi-1 cells, but did not affect the leukaemic cells without t(8;21)(q22;q22). We observed the morphological changes including chromatin condensation, fragmentation and the formation of apoptotic bodies in Kasumi-1 cells incubated with ribozymes for 7 days. In addition, DNA ladder formation was also detected after incubation with ribozymes which suggested the induction of apoptosis in Kasumi-1 cells by the AML1/MTG8 ribozymes. However, the ribozymes did not induce the expression of CD11b and CD14 antigens in Kasumi-1 cells. The above data suggest that these ribozymes therefore inhibit the growth of myeloid leukaemic cells with t(8;21)(q22;q22) by the induction of apoptosis, but not differentiation. We conclude therefore that the ribozymes targeted against AML1/MTG8 may have therapeutic potential for patients with AML carrying t(8;21)(q22;q22) while, in addition, the product of the chimeric gene is responsible for the pathogenesis of myeloid leukaemia. © 1999 Cancer Research Campaig
Demonstration of the Antioxidant Capabilities of a Product Formulated with Antioxidants Stabilized in their Reduced Form
DNA Priming-Protein Boosting Enhances Both Antigen-Specific Antibody and Th1-Type Cellular Immune Responses in a Murine Herpes Simplex Virus-2 gD Vaccine Model
- …
