98 research outputs found

    Patient safety in organizational culture as perceived by leaderships of hospital institutions with different types of administration

    Get PDF
    Abstract OBJECTIVE To identify the perceptions of leaderships toward patient safety culture dimensions in the routine of hospitals with different administrative profiles: government, social and private organizations, and make correlations among participating institutions regarding dimensions of patient safety culture used. METHOD A quantitative cross-sectional study that used the Self Assessment Questionnaire 30 translated into Portuguese. The data were processed by analysis of variance (ANOVA) in addition to descriptive statistics, with statistical significance set at p-value ≤ 0.05. RESULTS According to the participants' perceptions, the significant dimensions of patient safety culture were 'patient safety climate' and 'organizational learning', with 81% explanatory power. Mean scores showed that among private organizations, higher values were attributed to statements; however, the correlation between dimensions was stronger among government hospitals. CONCLUSION Different hospital organizations present distinct values for each dimension of patient safety culture and their investigation enables professionals to identify which dimensions need to be introduced or improved to increase patient safety

    Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (<it>Pleurotus ostreatus</it>) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.</p> <p>Results</p> <p>OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE<sub>2</sub>) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS <it>in vivo</it>. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.</p> <p>Conclusions</p> <p>Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.</p

    ParaVR: A Virtual Reality Training Simulator for Paramedic Skills maintenance

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Paramedic Practice, copyright © MA Healthcare, after peer review and technical editing by the publisher. To access the final edited and published work see https://www.paramedicpractice.com/features/article/paravr-a-virtual-reality-training-simulator-for-paramedic-skills-maintenance.Background, Virtual Reality (VR) technology is emerging as a powerful educational tool which is used in medical training and has potential benefits for paramedic practice education. Aim The aim of this paper is to report development of ParaVR, which utilises VR to address skills maintenance for paramedics. Methods Computer scientists at the University of Chester and the Welsh Ambulance Services NHS Trust (WAST) developed ParaVR in four stages: 1. Identifying requirements and specifications 2. Alpha version development, 3. Beta version development 4. Management: Development of software, further funding and commercialisation. Results Needle Cricothyrotomy and Needle Thoracostomy emerged as candidates for the prototype ParaVR. The Oculus Rift head mounted display (HMD) combined with Novint Falcon haptic device was used, and a virtual environment crafted using 3D modelling software, ported (a computing term meaning transfer (software) from one system or machine to another) onto Oculus Go and Google cardboard VR platform. Conclusion VR is an emerging educational tool with the potential to enhance paramedic skills development and maintenance. The ParaVR program is the first step in our development, testing, and scaling up of this technology
    corecore