1,473 research outputs found
Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars
We present two new planetary systems found around cool dwarf stars with data
from the K2 mission. The first system was found in K2-239 (EPIC 248545986),
char- acterized in this work as M3.0V and observed in the 14th campaign of K2.
It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and
1.1 R Earth, showing a compact configuration with orbital periods of 5.24, 7.78
and 10.1 days, close to 2:3:4 resonance. The second was found in K2-240 (EPIC
249801827), characterized in this work as M0.5V and observed in the 15th
campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R
Earth and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures
of the atmospheres of these planets are estimated to be in the range of 380-600
K and the amplitudes of signals in transmission spectroscopy are estimated at
~10 ppm.Comment: Accepted for publication in MNRAS letter
Contribution of microscopy for understanding the mechanism of action against trypanosomatids
Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin
Downregulating Notch counteracts KrasG12D-induced ERK activation and oxidative phosphorylation in myeloproliferative neoplasm.
The Notch signaling pathway contributes to the pathogenesis of a wide spectrum of human cancers, including hematopoietic malignancies. Its functions are highly dependent on the specific cellular context. Gain-of-function NOTCH1 mutations are prevalent in human T-cell leukemia, while loss of Notch signaling is reported in myeloid leukemias. Here, we report a novel oncogenic function of Notch signaling in oncogenic Kras-induced myeloproliferative neoplasm (MPN). We find that downregulation of Notch signaling in hematopoietic cells via DNMAML expression or Pofut1 deletion significantly blocks MPN development in KrasG12D mice in a cell-autonomous manner. Further mechanistic studies indicate that inhibition of Notch signaling upregulates Dusp1, a dual phosphatase that inactivates p-ERK, and downregulates cytokine-evoked ERK activation in KrasG12D cells. Moreover, mitochondrial metabolism is greatly enhanced in KrasG12D cells but significantly reprogrammed by DNMAML close to that in control cells. Consequently, cell proliferation and expanded myeloid compartment in KrasG12D mice are significantly reduced. Consistent with these findings, combined inhibition of the MEK/ERK pathway and mitochondrial oxidative phosphorylation effectively inhibited the growth of human and mouse leukemia cells in vitro. Our study provides a strong rational to target both ERK signaling and aberrant metabolism in oncogenic Ras-driven myeloid leukemia
Sub- and above barrier fusion of loosely bound Li with Si
Fusion excitation functions are measured for the system Li+Si
using the characteristic -ray method, encompassing both the sub-barrier
and above barrier regions, viz., = 7-24 MeV. Two separate experiments
were performed, one for the above barrier region (= 11-24 MeV) and
another for the below barrier region (= 7-10 MeV). The results were
compared with our previously measured fusion cross section for the
Li+Si system. We observed enhancement of fusion cross section at
sub-barrier regions for both Li and Li, but yield was substantially
larger for Li. However, for well above barrier regions, similar type of
suppression was identified for both the systems.Comment: 8 pages, 6 figures, as accepted for publication in Eur.Phys.J.
PIP5KIβ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells
Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al
Particle de-agglomeration with an in-line rotor-stator mixer at different solids loadings and viscosities
Particle de-agglomeration with an in-line rotor-stator mixer at different solids loadings and viscositie
Particle de-agglomeration with an in-line rotor-stator mixer at different solids loadings and viscosities
In-line rotor-stators are used in a range of energy intensive processes but there is relatively little published work with these devices on which to base process design. This study was performed to investigate the performance of an in-line rotor-stator for the de-agglomeration of nanoparticle clusters in a liquid with the objective of determining the effects of solids loading (up to 15%wt) and continuous phase viscosity (up to 100 mPa·s) on the mechanisms and kinetics of breakup and dispersion fineness. A Silverson 150/250MS rotor-stator equipped with the EMSC (Emulsor) screen was used in the recirculation loop of a stirred tank charged with 100 litres of pre-dispersion. It was shown that the power number values previously obtained at Reynolds numbers greater than 200,000 are constant at Reynolds numbers as low as 2,400.
It was found that the breakup kinetics were not significantly affected by the solids loading, within the range covered in this study. Whilst 10 and 15%wt. pre-dispersions in water were non-Newtonian, during the course of deagglomeration, the dispersion rheology changes resulting in a Newtonian final dispersion of a low viscosity- only slightly higher than that of water. On the other hand, when the viscosity of the continuous phase was increased, the de-agglomeration became slower even though the solids concentration was low (1%wt.) and the flow through the rotor-stator was still turbulent. This indicates that it is the flow conditions around the particle and not the bulk rheology of the dispersion that determines the kinetics of the de-agglomeration process. Breakup mechanism was found to be erosion and the dispersion fineness was determined by the size of aggregates
- …
