11,557 research outputs found

    Convex order for path-dependent derivatives: a dynamic programming approach

    Get PDF
    We investigate the (functional) convex order of for various continuous martingale processes, either with respect to their diffusions coefficients for L\'evy-driven SDEs or their integrands for stochastic integrals. Main results are bordered by counterexamples. Various upper and lower bounds can be derived for path wise European option prices in local volatility models. In view of numerical applications, we adopt a systematic (and symmetric) methodology: (a) propagate the convexity in a {\em simulatable} dominating/dominated discrete time model through a backward induction (or linear dynamical principle); (b) Apply functional weak convergence results to numerical schemes/time discretizations of the continuous time martingale satisfying (a) in order to transfer the convex order properties. Various bounds are derived for European options written on convex pathwise dependent payoffs. We retrieve and extend former results obtains by several authors since the seminal 1985 paper by Hajek . In a second part, we extend this approach to Optimal Stopping problems using a that the Snell envelope satisfies (a') a Backward Dynamical Programming Principle to propagate convexity in discrete time; (b') satisfies abstract convergence results under non-degeneracy assumption on filtrations. Applications to the comparison of American option prices on convex pathwise payoff processes are given obtained by a purely probabilistic arguments.Comment: 48

    Multilevel Richardson-Romberg extrapolation

    Get PDF
    We propose and analyze a Multilevel Richardson-Romberg (MLRR) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [Pa07] and the variance control resulting from the stratification introduced in the Multilevel Monte Carlo (MLMC) method (see [Hei01, Gi08]). Thus, in standard frameworks like discretization schemes of diffusion processes, the root mean squared error (RMSE) ε>0\varepsilon > 0 can be achieved with our MLRR estimator with a global complexity of ε2log(1/ε)\varepsilon^{-2} \log(1/\varepsilon) instead of ε2(log(1/ε))2\varepsilon^{-2} (\log(1/\varepsilon))^2 with the standard MLMC method, at least when the weak error E[Yh]E[Y0]\mathbf{E}[Y_h]-\mathbf{E}[Y_0] of the biased implemented estimator YhY_h can be expanded at any order in hh and YhY02=O(h12)\|Y_h - Y_0\|_2 = O(h^{\frac{1}{2}}). The MLRR estimator is then halfway between a regular MLMC and a virtual unbiased Monte Carlo. When the strong error YhY02=O(hβ2)\|Y_h - Y_0\|_2 = O(h^{\frac{\beta}{2}}), β<1\beta < 1, the gain of MLRR over MLMC becomes even more striking. We carry out numerical simulations to compare these estimators in two settings: vanilla and path-dependent option pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation.Comment: 38 page

    Greedy vector quantization

    Get PDF
    We investigate the greedy version of the LpL^p-optimal vector quantization problem for an Rd\mathbb{R}^d-valued random vector X ⁣LpX\!\in L^p. We show the existence of a sequence (aN)N1(a_N)_{N\ge 1} such that aNa_N minimizes amin1iN1XaiXaLpa\mapsto\big \|\min_{1\le i\le N-1}|X-a_i|\wedge |X-a|\big\|_{L^p} (LpL^p-mean quantization error at level NN induced by (a1,,aN1,a)(a_1,\ldots,a_{N-1},a)). We show that this sequence produces LpL^p-rate optimal NN-tuples a(N)=(a1,,aN)a^{(N)}=(a_1,\ldots,a_{_N}) (i.e.i.e. the LpL^p-mean quantization error at level NN induced by a(N)a^{(N)} goes to 00 at rate N1dN^{-\frac 1d}). Greedy optimal sequences also satisfy, under natural additional assumptions, the distortion mismatch property: the NN-tuples a(N)a^{(N)} remain rate optimal with respect to the LqL^q-norms, pq<p+dp\le q <p+d. Finally, we propose optimization methods to compute greedy sequences, adapted from usual Lloyd's I and Competitive Learning Vector Quantization procedures, either in their deterministic (implementable when d=1d=1) or stochastic versions.Comment: 31 pages, 4 figures, few typos corrected (now an extended version of an eponym paper to appear in Journal of Approximation

    High-resolution product quantization for Gaussian processes under sup-norm distortion

    Full text link
    We derive high-resolution upper bounds for optimal product quantization of pathwise contionuous Gaussian processes respective to the supremum norm on [0,T]^d. Moreover, we describe a product quantization design which attains this bound. This is achieved under very general assumptions on random series expansions of the process. It turns out that product quantization is asymptotically only slightly worse than optimal functional quantization. The results are applied e.g. to fractional Brownian sheets and the Ornstein-Uhlenbeck process.Comment: Version publi\'ee dans la revue Bernoulli, 13(3), 653-67

    A mathematical treatment of bank monitoring incentives

    Full text link
    In this paper, we take up the analysis of a principal/agent model with moral hazard introduced in [17], with optimal contracting between competitive investors and an impatient bank monitoring a pool of long-term loans subject to Markovian contagion. We provide here a comprehensive mathematical formulation of the model and show using martingale arguments in the spirit of Sannikov [18] how the maximization problem with implicit constraints faced by investors can be reduced to a classical stochastic control problem. The approach has the advantage of avoiding the more general techniques based on forward-backward stochastic differential equations described in [6] and leads to a simple recursive system of Hamilton-Jacobi-Bellman equations. We provide a solution to our problem by a verification argument and give an explicit description of both the value function and the optimal contract. Finally, we study the limit case where the bank is no longer impatient

    Functional quantization and metric entropy for Riemann-Liouville processes

    Get PDF
    We derive a high-resolution formula for the L2L^2-quantization errors of Riemann-Liouville processes and the sharp Kolmogorov entropy asymptotics for related Sobolev balls. We describe a quantization procedure which leads to asymptotically optimal functional quantizers. Regular variation of the eigenvalues of the covariance operator plays a crucial role

    Ergodic approximation of the distribution of a stationary diffusion : rate of convergence

    Get PDF
    We extend to Lipschitz continuous functionals either of the true paths or of the Euler scheme with decreasing step of a wide class of Brownian ergodic diffusions, the Central Limit Theorems formally established for their marginal empirical measure of these processes (which is classical for the diffusions and more recent as concerns their discretization schemes). We illustrate our results by simulations in connection with barrier option pricing.Comment: 33 page
    corecore