469 research outputs found

    Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.

    Get PDF
    Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Binary orbits as the driver of γ-ray emission and mass ejection in classical novae

    Get PDF
    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel �10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters

    Estimation of proteinuria as a predictor of complications of pre-eclampsia: a systematic review

    Get PDF
    Background Proteinuria is one of the essential criteria for the clinical diagnosis of pre-eclampsia. Increasing levels of proteinuria is considered to be associated with adverse maternal and fetal outcomes. We aim to determine the accuracy with which the amount of proteinuria predicts maternal and fetal complications in women with pre-eclampsia by systematic quantitative review of test accuracy studies. Methods We conducted electronic searches in MEDLINE (1951 to 2007), EMBASE (1980 to 2007), the Cochrane Library (2007) and the MEDION database to identify relevant articles and hand-search of selected specialist journals and reference lists of articles. There were no language restrictions for any of these searches. Two reviewers independently selected those articles in which the accuracy of proteinuria estimate was evaluated to predict maternal and fetal complications of pre-eclampsia. Data were extracted on study characteristics, quality and accuracy to construct 2 × 2 tables with maternal and fetal complications as reference standards. Results Sixteen primary articles with a total of 6749 women met the selection criteria with levels of proteinuria estimated by urine dipstick, 24-hour urine proteinuria or urine protein:creatinine ratio as a predictor of complications of pre-eclampsia. All 10 studies predicting maternal outcomes showed that proteinuria is a poor predictor of maternal complications in women with pre-eclampsia. Seventeen studies used laboratory analysis and eight studies bedside analysis to assess the accuracy of proteinuria in predicting fetal and neonatal complications. Summary likelihood ratios of positive and negative tests for the threshold level of 5 g/24 h were 2.0 (95% CI 1.5, 2.7) and 0.53 (95% CI 0.27, 1) for stillbirths, 1.5 (95% CI 0.94, 2.4) and 0.73 (95% CI 0.39, 1.4) for neonatal deaths and 1.5 (95% 1, 2) and 0.78 (95% 0.64, 0.95) for Neonatal Intensive Care Unit admission. Conclusion Measure of proteinuria is a poor predictor of either maternal or fetal complications in women with pre-eclampsia

    Multinational development and validation of an early prediction model for delirium in ICU patients

    Get PDF
    Rationale Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. Purpose To develop and validate a model based on data available at ICU admission to predict delirium development during a patient’s complete ICU stay and to determine the predictive value of this model in relation to the time of delirium development. Methods Prospective cohort study in 13 ICUs from seven countries. Multiple logistic regression analysis was used to develop the early prediction (E-PRE-DELIRIC) model on data of the first two-thirds and validated on data of the last one-third of the patients from every participating ICU. Results In total, 2914 patients were included. Delirium incidence was 23.6 %. The E-PRE-DELIRIC model consists of nine predictors assessed at ICU admission: age, history of cognitive impairment, history of alcohol abuse, blood urea nitrogen, admission category, urgent admission, mean arterial blood pressure, use of corticosteroids, and respiratory failure. The area under the receiver operating characteristic curve (AUROC) was 0.76 [95 % confidence interval (CI) 0.73–0.77] in the development dataset and 0.75 (95 % CI 0.71–0.79) in the validation dataset. The model was well calibrated. AUROC increased from 0.70 (95 % CI 0.67–0.74), for delirium that developed 6 days. Conclusion Patients’ delirium risk for the complete ICU length of stay can be predicted at admission using the E-PRE-DELIRIC model, allowing early preventive interventions aimed to reduce incidence and severity of ICU delirium

    Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review

    Get PDF
    Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes. Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane’s ‘risk of bias’ tool. Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs. Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future

    Aidnogenesis via Leptogenesis and Dark Sphalerons

    Get PDF
    We discuss aidnogenesis, the generation of a dark matter asymmetry via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form "dark baryons" through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be approximately 6 GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.Comment: Minor changes, discussion of present constraints expanded. 16 pages, 2 eps figures, REVTeX

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol
    corecore