753 research outputs found
Black Hole Emission in String Theory and the String Phase of Black Holes
String theory properly describes black-hole evaporation. The quantum string
emission by Black Holes is computed. The black-hole temperature is the Hawking
temperature in the semiclassical quantum field theory (QFT) regime and becomes
the intrinsic string temperature, T_s, in the quantum (last stage) string
regime. The QFT-Hawking temperature T_H is upper bounded by the string
temperature T_S. The black hole emission spectrum is an incomplete gamma
function of (T_H - T_S). For T_H << T_S, it yields the QFT-Hawking emission.
For T_H \to T_S, it shows highly massive string states dominate the emission
and undergo a typical string phase transition to a microscopic `minimal' black
hole of mass M_{\min} or radius r_{\min} (inversely proportional to T_S) and
string temperature T_S. The string back reaction effect (selfconsistent black
hole solution of the semiclassical Einstein equations) is computed. Both, the
QFT and string black hole regimes are well defined and bounded.The string
`minimal' black hole has a life time tau_{min} simeq (k_B c)/(G hbar [T_S]^3).
The semiclassical QFT black hole (of mass M and temperature T_H) and the string
black hole (of mass M_{min} and temperature T_S) are mapped one into another by
a `Dual' transform which links classical/QFT and quantum string regimes.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI:
Phase Transitions in the Early Universe: Theory and Observations. To appear
in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez.
(Kluwer Pub
On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes
In this paper, we study various aspects of the equilibrium thermodynamic
state space geometry of AdS black holes. We first examine the
Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context,
the state space scalar curvature of these black holes is analysed in various
regions of their thermodynamic parameter space. This provides important new
insights into the structure and significance of the scalar curvature. We
further investigate critical phenomena, and the behaviour of the scalar
curvature near criticality, for KN-AdS black holes in two mixed ensembles,
introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The
critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in
the canonical ensemble. This suggests an universality in the scaling behaviour
near critical points of AdS black holes. Our results further highlight
qualitative differences in the thermodynamic state space geometry for electric
charge and angular momentum fluctuations of these.Comment: 1 + 37 Pages, LaTeX, includes 31 figures. A figure and a
clarification added
Can spacetime curvature induced corrections to Lamb shift be observable?
The Lamb shift results from the coupling of an atom to vacuum fluctuations of
quantum fields, so corrections are expected to arise when the spacetime is
curved since the vacuum fluctuations are modified by the presence of spacetime
curvature. Here, we calculate the curvature-induced correction to the Lamb
shift outside a spherically symmetric object and demonstrate that this
correction can be remarkably significant outside a compact massive
astrophysical body. For instance, for a neutron star or a stellar mass black
hole, the correction is 25% at a radial distance of ,
16% at and as large as 1.6% even at , where is
the mass of the object, the Newtonian constant, and the speed of light.
In principle, we can look at the spectra from a distant compact super-massive
body to find such corrections. Therefore, our results suggest a possible way of
detecting fundamental quantum effects in astronomical observations.Comment: 13 pages, 3 figures, slight title change, clarifications and more
discussions added, version to be published in JHE
Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes
We investigate phase transitions and critical phenomena in Kerr-Newman-Anti
de Sitter black holes in the framework of the geometry of their equilibrium
thermodynamic state space. The scalar curvature of these state space Riemannian
geometries is computed in various ensembles. The scalar curvature diverges at
the critical point of second order phase transitions for these systems.
Remarkably, however, we show that the state space scalar curvature also carries
information about the liquid-gas like first order phase transitions and the
consequent instabilities and phase coexistence for these black holes. This is
encoded in the turning point behavior and the multi-valued branched structure
of the scalar curvature in the neighborhood of these first order phase
transitions. We re-examine this first for the conventional Van der Waals
system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS
black holes for a grand canonical and two "mixed" ensembles and establish novel
phase structures. The state space scalar curvature bears out our assertion for
the first order phase transitions for both the known and the new phase
structures, and closely resembles the Van der Waals system.Comment: 1 + 41 pages, LaTeX, 46 figures. Discussions, clarifications and
references adde
An Infinite-Dimensional Family of Black-Hole Microstate Geometries
We construct the first explicit, smooth, horizonless black-hole microstate
geometry whose moduli space is described by an arbitrary function of one
variable and is thus infinite-dimensional. This is achieved by constructing the
scalar Green function on a simple D6 anti-D6 background, and using this Green
function to obtain the fully back-reacted solution for a supertube with varying
charge density in this background. We show that this supertube can store
parametrically more entropy than in flat space, confirming the entropy
enhancement mechanism that was predicted using brane probes. We also show that
all the local properties of the fully back-reacted solution can, in fact, be
obtained using the DBI action of an appropriate brane probe. In particular, the
supergravity and the DBI analysis yield identical functional bubble equations
that govern the relative locations of the centers. This indicates that there is
a non-renormalization theorem that protects these functional equations as one
moves in moduli space. Our construction creates configurations that are beyond
the scope of recent arguments that appear to put strong limits on the entropy
that can be found in smooth supergravity solutions.Comment: 46 pages, 1 figure, LaTe
Particle creation rate for dynamical black holes
We present the particle creation probability rate around a general black hole
as an outcome of quantum fluctuations. Using the uncertainty principle for
these fluctuation, we derive a new ultraviolet frequency cutoff for the
radiation spectrum of a dynamical black hole. Using this frequency cutoff, we
define the probability creation rate function for such black holes. We consider
a dynamical Vaidya model, and calculate the probability creation rate for this
case when its horizon is in a slowly evolving phase. Our results show that one
can expect the usual Hawking radiation emission process in the case of a
dynamical black hole when it has a slowly evolving horizon. Moreover,
calculating the probability rate for a dynamical black hole gives a measure of
when Hawking radiation can be killed off by an incoming flux of matter or
radiation. Our result strictly suggests that we have to revise the Hawking
radiation expectation for primordial black holes that have grown substantially
since they were created in the early universe. We also infer that this
frequency cut off can be a parameter that shows the primordial black hole
growth at the emission moment.Comment: 10 pages, 1 figure. The paper was rewritten in more clear
presentation and one more appendix is adde
Chiral tunneling and the Klein paradox in graphene
The so-called Klein paradox - unimpeded penetration of relativistic particles
through high and wide potential barriers - is one of the most exotic and
counterintuitive consequences of quantum electrodynamics (QED). The phenomenon
is discussed in many contexts in particle, nuclear and astro- physics but
direct tests of the Klein paradox using elementary particles have so far proved
impossible. Here we show that the effect can be tested in a conceptually simple
condensed-matter experiment by using electrostatic barriers in single- and
bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum
tunneling in these materials becomes highly anisotropic, qualitatively
different from the case of normal, nonrelativistic electrons. Massless Dirac
fermions in graphene allow a close realization of Klein's gedanken experiment
whereas massive chiral fermions in bilayer graphene offer an interesting
complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure
Forty years studying British politics : the decline of Anglo-America
The still present belief some 40 years ago that British politics was both exceptional and superior has been replaced by more theoretically sophisticated analyses based on a wider and more rigorously deployed range of research techniques, although historical analysis appropriately remains important. The American influence on the study of British politics has declined, but the European Union dimension has not been fully integrated. The study of interest groups has been in some respects a fading paradigm, but important questions related to democratic health have still to be addressed. Public administration has been supplanted by public policy, but economic policy remains under-studied. A key challenge for the future is the study of the management of expectations
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
Thermodynamic instability of doubly spinning black objects
We investigate the thermodynamic stability of neutral black objects with (at
least) two angular momenta. We use the quasilocal formalism to compute the
grand canonical potential and show that the doubly spinning black ring is
thermodynamically unstable. We consider the thermodynamic instabilities of
ultra-spinning black objects and point out a subtle relation between the
microcanonical and grand canonical ensembles. We also find the location of the
black string/membrane phases of doubly spinning black objects.Comment: 25 pages, 7 figures v2: matches the published versio
- …
