84 research outputs found

    Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation

    Get PDF
    Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduction in the AMOC over the twentieth century and particularly after 1970. Since 1990 the AMOC seems to have partly recovered. This time evolution is consistently suggested by an AMOC index based on sea surface temperatures, by the hemispheric temperature difference, by coral-based proxies and by oceanic measurements. We discuss a possible contribution of the melting of the Greenland Ice Sheet to the slowdown. Using a multi-proxy temperature reconstruction for the AMOC index suggests that the AMOC weakness after 1975 is an unprecedented event in the past millennium (p > 0.99). Further melting of Greenland in the coming decades could contribute to further weakening of the AMOC

    Possible causes of data model discrepancy in the temperature history of the last Millennium

    Get PDF
    Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role

    Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Get PDF
    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties

    Winter amplification of the European Little Ice Age cooling by the subpolar gyre

    Get PDF
    Climate reconstructions reveal a strong winter amplification of the cooling over central and northern continental Europe during the Little Ice Age period (LIA, here defined as c. 16th-18th centuries) via persistent, blocked atmospheric conditions. Although various potential drivers have been suggested to explain the LIA cooling, no coherent mechanism has yet been proposed for this seasonal contrast. Here we demonstrate that such exceptional wintertime conditions arose from sea ice expansion and reduced ocean heat losses in the Nordic and Barents seas, driven by a multicentennial reduction in the northward heat transport by the subpolar gyre (SPG). However, these anomalous oceanic conditions were largely decoupled from the European atmospheric variability in summer. Our novel dynamical explanation is derived from analysis of an ensemble of last millennium climate simulations, and is supported by reconstructions of European temperatures and atmospheric circulation variability and North Atlantic/Arctic paleoceanographic conditions. We conclude that SPG-related internal climate feedbacks were responsible for the winter amplification of the European LIA cooling. Thus, characterization of SPG dynamics is essential for understanding multicentennial variations of the seasonal cycle in the European/North Atlantic sector

    Disequilibrium, adaptation and the Norse settlement of Greenland

    Get PDF
    This research was supported by the University of Edinburgh ExEDE Doctoral Training Studentship and NSF grant numbers 1202692 and 1140106.There is increasing evidence to suggest that arctic cultures and ecosystems have followed non-linear responses to climate change. Norse Scandinavian farmers introduced agriculture to sub-arctic Greenland in the late tenth century, creating synanthropic landscapes and utilising seasonally abundant marine and terrestrial resources. Using a niche-construction framework and data from recent survey work, studies of diet, and regional-scale climate proxies we examine the potential mismatch between this imported agricultural niche and the constraints of the environment from the tenth to the fifteenth centuries. We argue that landscape modification conformed the Norse to a Scandinavian style of agriculture throughout settlement, structuring and limiting the efficacy of seasonal hunting strategies. Recent climate data provide evidence of sustained cooling from the mid thirteenth century and climate variation from the early fifteenth century. Archaeological evidence suggests that the Norse made incremental adjustments to the changing sub-arctic environment, but were limited by cultural adaptations made in past environments.Publisher PDFPeer reviewe

    Ethics in climate change: a climate scientist's perspective

    No full text

    Linear Inverse Modeling for Coupled Atmosphere‐Ocean Ensemble Climate Prediction

    No full text
    corecore