405 research outputs found
Survey of semi-regular multiresolution models for interactive terrain rendering
Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accurac
Cached Geometry Manager for View-dependent LOD Rendering
The new generation of commodity graphics cards with significant on-board video memory has become widely
popular and provides high-performance rendering and flexibility. One of the features to be exploited with this
hardware is the use of the on-board video memory to store geometry information. This strategy significantly
reduces the data transfer overhead from sending geometry data over the (AGP) bus interface from main memory
to the graphics card. However, taking advantage of cached geometry is not a trivial task because the data models
often exceed the memory size of the graphics card. In this paper we present a dynamic Cached Geometry
Manager (CGM) to address this issue. We show how this technique improves the performance of real-time
view-dependent level-of-detail (LOD) selection and rendering algorithms of large data sets. Alternative caching
approaches have been analyzed over two different view-dependent progressive mesh (VDPM) frameworks: one
for rendering of arbitrary manifold 3D meshes, and one for terrain visualization
Dictionary Learning-based Inpainting on Triangular Meshes
The problem of inpainting consists of filling missing or damaged regions in
images and videos in such a way that the filling pattern does not produce
artifacts that deviate from the original data. In addition to restoring the
missing data, the inpainting technique can also be used to remove undesired
objects. In this work, we address the problem of inpainting on surfaces through
a new method based on dictionary learning and sparse coding. Our method learns
the dictionary through the subdivision of the mesh into patches and rebuilds
the mesh via a method of reconstruction inspired by the Non-local Means method
on the computed sparse codes. One of the advantages of our method is that it is
capable of filling the missing regions and simultaneously removes noise and
enhances important features of the mesh. Moreover, the inpainting result is
globally coherent as the representation based on the dictionaries captures all
the geometric information in the transformed domain. We present two variations
of the method: a direct one, in which the model is reconstructed and restored
directly from the representation in the transformed domain and a second one,
adaptive, in which the missing regions are recreated iteratively through the
successive propagation of the sparse code computed in the hole boundaries,
which guides the local reconstructions. The second method produces better
results for large regions because the sparse codes of the patches are adapted
according to the sparse codes of the boundary patches. Finally, we present and
analyze experimental results that demonstrate the performance of our method
compared to the literature
Tensor approximation in visualization and graphics
In this course, we will introduce the basic concepts of tensor approximation (TA) – a higher-order generalization of the SVD and PCA methods – as well as its applications to visual data representation, analysis and visualization, and bring the TA framework closer to visualization and computer graphics researchers and practitioners. The course will cover the theoretical background of TA methods, their properties and how to compute them, as well as practical applications of TA methods in visualization and computer graphics contexts. In a first theoretical part, the attendees will be instructed on the necessary mathematical background of TA methods to learn the basics skills of using and applying these new tools in the context of the representation of large multidimensional visual data. Specific and very noteworthy features of the TA framework are highlighted which can effectively be exploited for spatio-temporal multidimensional data representation and visualization purposes. In two application oriented sessions, compact TA data representation in scientific visualization and computer graphics as well as decomposition and reconstruction algorithms will be demonstrated. At the end of the course, the participants will have a good basic knowledge of TA methods along with a practical understanding of its potential application in visualization and graphics related projects
An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees
We present an efficient technique for out-of-core multi-resolution construction and high quality interactive visualization of massive point clouds. Our approach introduces a novel hierarchical level of detail (LOD) organization based on multi-way kd-trees, which simplifies memory management and allows control over the LOD-tree height. The LOD tree, constructed bottom up using a fast high-quality point simplification method, is fully balanced and contains all uniformly sized nodes. To this end, we introduce and analyze three efficient point simplification approaches that yield a desired number of high-quality output points. For constant rendering performance, we propose an efficient rendering-on-a-budget method with asynchronous data loading, which delivers fully continuous high quality rendering through LOD geo-morphing and deferred blending. Our algorithm is incorporated in a full end-to-end rendering system, which supports both local rendering and cluster-parallel distributed rendering. The method is evaluated on complex models made of hundreds of millions of point sample
Streaming visualisation of quantitative mass spectrometry data based on a novel raw signal decomposition method
As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/
- …
