94 research outputs found
Parkfield earthquakes of June 27-29, 1966, Monterey and San Luis Obispo Counties, California—Preliminary report
Two earthquakes, M = 5.3 and 5.5, shook the Parkfield area in southern Monterey County, California, at 0409:56.5 and 0426:13.8 GMT, 28 June 1966. They were preceded by foreshocks on the same day at 0100 and 0115. A third shock, M = 5.0, occurred in the same area at 1953:26.2 on 29 June. The earthquakes were followed by a heavy sequence of aftershocks with epicenters along the San Andreas fault zone extending for about 15 miles southward beyond Cholame in San Luis Obispo County. A P-wave first-motion fault plane solution shows strike of vertical fault plane is N 33°W, coinciding with a surface zone of en echelon fault fractures in the pattern characteristic of right-lateral, strike-slip movement. The motion appears to have an upward component on the west side, at about 20° from pure strike slip. Extensive instrumentation within a few miles of the epicentral district gave unusually complete records from foreshock to aftershock sequence. A strong-motion instrument in the fault zone near Cholame recorded the unusually high horizontal acceleration of 0.5 g.
The epicentral region of the earthquakes is on a known active segment of the San Andreas fault. Earthquakes in 1901, 1922, and 1934 in this region were also accompanied by surface faulting. On the published State geologic map, scale 1:250,000, the San Andreas fault zone shows a braided pattern of several branching en echelon major faults. Topographic forms, typical of the features of rift valleys, testify to the recency of fault movements. Small right-lateral surficial displacements had been recognized prior to the late June earthquakes in at least three places on the Parkfield-Cholame trace of the fault. Similar creep, or slippage, has continued since the earthquakes. Extensive nets of survey markers installed by 30 June across the active fault trace had recorded slippage as great as 0.1 inch per day by 12 July. The fault trace associated with the earthquakes is principally in alluvium of unknown depth in Cholame Valley, apparently a faulted graben within the San Andreas fault zone. Under a blanket of Tertiary and Quaternary sedimentary rocks in this part of the southern Coast Ranges, the great fault separates Jurassic-Cretaceous granitic and metamorphic rocks in the western block from Late Jurassic eugeosynclinal sedimentary and volcanic rocks of the Franciscan Formation in the eastern block.
In spite of the large horizontal acceleration recorded near the fault, very little building damage occurred in this sparsely populated region. Small concrete and steel bridges in, and adjacent to the fault trace, did not have their structural strength impaired
Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow
International audience[1] We compile upper mantle P n velocities from seismic refraction/wide-angle reflection surveys in the southern Superior Province of the Canadian Shield and compare them with temperatures at the Moho deduced from heat flow data. Calculated Moho temperatures and P n velocities correlate well, showing that in this area, P n depends primarily on temperature. The obtained values of @V(P n)/@T depend weakly on the assumed value of Moho heat flow and are on the order of À6.0 Â 10 À4 ± 10% km s À1 K À1 , within the range of temperature derivatives obtained in laboratory studies of ultramafic rocks. Comparison between observed P n velocities and predicted values for several mineralogical models at Moho temperatures allows constraints on both the Moho heat flow and the shallow mantle composition. For all Moho heat flows, undepleted (clinopyroxene-rich) mantle compositions do not allow a good fit to the data. For depleted mantle compositions, temperatures consistent with the observed P n velocities correspond to values of Moho heat flow larger than 12 mW m À2. For our preferred Moho heat flow of 15 mW m À2 , the best fit mantle composition is slightly less depleted than models for average Archean subcontinental lithospheric mantle. This may be due to rejuvenation by melt-related metasomatism during the Keweenawan rifting event. The similarity in P n À T conversion factors estimated from this empirical large-scale geophysical study and those from laboratory data provides confidence in the absolute temperature values deduced from heat flow measurements and seismic studies. Citation: Perry, H. K. C., C. Jaupart, J.-C. Mareschal, and N. M. Shapiro (2006), Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow
Velocity variations in the uppermost mantle beneath the southern Sierra Nevada and Walker Lane
We model Pn waveforms from two earthquakes in the southwestern United States (Mammoth Lakes, California, and western Nevada) to determine a velocity model of the crustal and mantle structure beneath the southern Sierra Nevada and Walker Lane. We derive a one-dimensional velocity model that includes a smooth crust-mantle transition east of Death Valley and extending south into the eastern Mojave desert. West of Death Valley and toward the Sierra Nevada a low-velocity mantle (V_p = 7.6 km/s) directly below the crust indicates the lithosphere is absent. At the base of this low-velocity structure (at 75–100 km depth) the P wave velocity jumps discontinuously to V_p 8.0 km/s. The area of low velocity is bounded by the Garlock Fault to the south and the Sierra Nevada to the west, but we cannot resolve its northern extent. However, on the basis of teleseismic travel times we postulate that the anomaly terminates at about 38°N. The presence of a low-velocity, upper mantle anomaly in this area agrees with geochemical research on xenoliths from the southern Sierras and recent studies of receiver functions, refraction profiles, tomography, and gravity. However, the velocity discontinuity at 75–100 km is a new discovery and may represent the top of the once present, now unaccounted for and possibly sunken Sierra Nevada lithosphere
USArray Imaging of Continental Crust in the Conterminous United States
The thickness and bulk composition of continental crust provide important constraints on the evolution and dynamics of continents. Crustal mineralogy and thickness both may influence gravity anomalies, topographic elevation, and lithospheric strength, but prior to the inception of EarthScope’s USArray, seismic measurements of crustal thickness and properties useful for inferring lithology are sparse. Here we improve upon a previously published methodology for joint inversion of Bouguer gravity anomalies and seismic receiver functions by using parameter space stacking of cross correlations of modeled synthetic and observed receiver functions instead of standard H-κ amplitude stacking. The new method is applied to estimation of thickness and bulk seismic velocity ratio, vP/vS, of continental crust in the conterminous United States using USArray and other broadband network data. Crustal thickness variations are reasonably consistent with those found in other studies and show interesting relationships to the history of North American continental formation. Seismic velocity ratios derived in this study are more robust than in other analyses and hint at large-scale variations in composition of continental crust. To interpret the results, we model the pressure-/temperature-dependent thermodynamics of mineral formation for various crustal chemistries, with and without volatile constituents. Our results suggest that hydration lowers bulk crustal vP/vS and density and releases heat in the shallow crust but absorbs heat in the lowermost crust (where plagioclase breaks down to pyroxene and garnet resulting in higher seismic velocity). Hence, vP/vS variations may provide a useful proxy for hydration state in the crust
Thermobarometric constraints on the depth of exposure and conditions of plutonism and metamorphism at deep levels of the Sierra Nevada Batholith, Tehachapi Mountains, California
U.S. Geological Survey research on the tectonics of the San Andreas Fault System, California: Introduction
- …
