32 research outputs found

    CGCG 292-057 - a radio galaxy with merger-modulated radio activity

    Full text link
    We announce the discovery of a unique combination of features in a radio source identified with the merger galaxy CGCG 292-057. The radio galaxy both exhibits a highly complex, X-like structure and shows signs of recurrent activity in the form of double-double morphology. The outer lobes of CGCG 292-057 are characterized by low radio power, P_{1400MHz} \simeq 2 * 10^{24} W\Hz^{-1}, placing this source below the FRII/FRI luminosity threshold, and are highly polarized (almost 20 per cent at 1400 MHz) as is typical of X-shaped radio sources. The host is a LINER-type galaxy with a relatively low black hole mass and double-peaked narrow emission lines. These features make this galaxy a primary target for studies of merger-triggered radio activity.Comment: 7 pages, 5 figures, submitted to MNRA

    On the origin of X-shaped radio galaxies

    Full text link
    After a brief, critical review of the leading explanations proposed for the small but important subset of radio galaxies showing an X-shaped morphology (XRGs) we propose a generalized model, based on the jet-shell interaction and spin-flip hypotheses. The most popular scenarios for this intriguing phenomenon invoke either hydrodynamical backflows and over-pressured cocoons or rapid jet reorientations, presumably from the spin-flips of central engines following the mergers of pairs of galaxies, each of which contains a supermassive black hole (SMBH). We confront these models with a number of key observations and thus argue that none of the models is capable of explaining the entire range of salient observational properties of XRGs, although some of the arguments raised in the literature against the spin-flip scenario are probably not tenable. We then propose here a new scenario which also involves galactic mergers but would allow the spin of the central engine to maintain its direction. Motivated by the detailed multi-band observations of the nearest radio galaxy, Centaurus A, this new model emphasizes the role of interactions between the jets and the shells of stars and gas that form and rotate around the merged galaxy and can cause temporary deflections of the jets, occasionally giving rise to an X-shaped radio structure. Although each of the models is likely to be relevant to a subset of XRGs, the bulk of the evidence indicates that most of them are best explained by the jet-shell interaction or spin-flip hypotheses.Comment: 19 pages, major revision including two Appendices and a Table, accepted in Research in Astronomy and Astrophysic

    Estimation of spacecraft mass properties using angular rate gyro data

    Full text link

    Thick inhomogeneous shell models for the radio emission from Nova Serpentis 1970

    No full text

    Testing of Aluminium Carbide Formation in Hall-Heroult Electrolytic Cell

    Full text link
    The trend in the aluminium smelting industry today is to operate cells with graphitized carbon cathode linings, increased current density and acidic bath chemistry. The resulting problem is an accelerated wear of graphitized cathode blocks, thought to be caused by formation and subsequent dissolution of Al4C3 at the cathode lining surface. The cycle of formation and subsequent dissolution Al4C3 is recognized as one of the most important mechanism causing pothole and surface wear, which results in limiting of the cell lifetime and loss efficiency. A special laboratory test method was developed to elucidate the mechanism of Al4C3 formation in electrolytic cell. The Al4C3 formation in the region between the carbon surface and aluminium as well as between the carbon surface and electrolytic bath has also been studied using X-ray diffraction, as well as optical and scanning electron microscopy. Solid Al4C3 layer was observed at the carbon surface. A possible mechanism which explains the presence of Al4C3 at the metal-bath interface is the transfer of dissolved carbide in the bath from metal-carbon interface.</jats:p
    corecore