4,544 research outputs found
What clean sewers tell us about development in African slums
Development scholars advocate community mobilisation for effective home-grown solutions to local problems. In this post, Jeffrey Paller explores mitigating factors that determine how community leaders wield power to generate collective action. He finds that whether they serve private, club, or the public interest, shapes the betterment or detriment of their communities
Sleep preserves original and distorted memory traces
Retrieval facilitates the long-term retention of memories, but may also enable stored representations to be updated with new information that is available at the time of retrieval. However, if information integrated during retrieval is erroneous, future recall can be impaired: a phenomenon known as retrieval-induced distortion (RID). Whether RID causes an “overwriting” of existing memory traces or leads to the co-existence of original and distorted memory traces is unknown. Because sleep enhances memory consolidation, the effects of sleep after RID can provide novel insights into the structure of updated memories. As such, we investigated the effects of sleep on memory consolidation following RID. Participants encoded word locations and were then tested before (T1) and after (T2) an interval of sleep or wakefulness. At T2, the majority of words were placed closer to the locations retrieved at T1 than to the studied locations, consistent with RID. After sleep compared with after wake, the T2-retrieved locations were closer to both the studied locations and the T1-retrieved locations. These findings suggest that RID leads to the formation of an additional memory trace that corresponds to a distorted variant of the same encoding event, which is strengthened alongside the original trace during sleep. More broadly, these data provide evidence for the importance of sleep in the preservation and adaptive updating of memories
The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-memory associations
Objectives: To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. Methods: 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS) (TMR). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. Results: TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. Conclusions: TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations
Recommended from our members
The microbiome in patients with atopic dermatitis.
As an interface with the environment, the skin is a complex ecosystem colonized by many microorganisms that coexist in an established balance. The cutaneous microbiome inhibits colonization with pathogens, such as Staphylococcus aureus, and is a crucial component for function of the epidermal barrier. Moreover, crosstalk between commensals and the immune system is now recognized because microorganisms can modulate both innate and adaptive immune responses. Host-commensal interactions also have an effect on the developing immune system in infants and, subsequently, the occurrence of diseases, such as asthma and atopic dermatitis (AD). Later in life, the cutaneous microbiome contributes to the development and course of skin disease. Accordingly, in patients with AD, a decrease in microbiome diversity correlates with disease severity and increased colonization with pathogenic bacteria, such as S aureus. Early clinical studies suggest that topical application of commensal organisms (eg, Staphylococcus hominis or Roseomonas mucosa) reduces AD severity, which supports an important role for commensals in decreasing S aureus colonization in patients with AD. Advancing knowledge of the cutaneous microbiome and its function in modulating the course of skin disorders, such as AD, might result in novel therapeutic strategies
Recommended from our members
Crisaborole Ointment Improves Quality of Life of Patients with Mild to Moderate Atopic Dermatitis and Their Families.
IntroductionThe impact of crisaborole ointment, a nonsteroidal phosphodiesterase 4 inhibitor for the treatment of mild to moderate atopic dermatitis (AD), on quality of life (QoL) was assessed in two identically designed phase 3 studies (AD-301: NCT02118766; AD-302: NCT02118792, both at http://www.clinicaltrials.gov ).MethodsIn both studies, patients aged ≥ 2 years with mild to moderate AD per the Investigator's Static Global Assessment were randomly assigned 2:1 to receive crisaborole or vehicle twice daily for 28 days. QoL was assessed using the Children's Dermatology Life Quality Index (CDLQI) (2-15 years), the Dermatology Life Quality Index (DLQI) (≥ 16 years), and the Dermatitis Family Impact Questionnaire (DFI) (parents/caregivers/family of patients aged 2-17 years). Established QoL score severity bands provided clinical context.ResultsGreater mean improvement in QoL was observed in crisaborole-treated patients than in vehicle-treated patients at day 29 [mean change from baseline (∆BL), CDLQI: - 4.6 vs. - 3.0; P < 0.001; DLQI: - 5.2 vs. - 3.5; P = 0.015]. At baseline, more than half the patients had a "moderate effect" or higher of AD on QoL. At day 29, there was a trend toward more crisaborole- than vehicle-treated patients having "small effect" to "no effect", The QoL of parents/caregivers/family improved more for crisaborole-treated than for vehicle-treated patients (∆BL, DFI: - 3.7 vs. - 2.7; P = 0.003).ConclusionCrisaborole treatment results in clinically meaningful improvement in QoL for patients and their parents/caregivers/families.Trial registrationAD-301: http://www.clinicaltrials.gov , NCT02118766; AD-302: http://www.clinicaltrials.gov , NCT02118792.FundingAnacor Pharmaceuticals, Inc., a wholly owned subsidiary of Pfizer Inc., New York, NY
Why Some Faces won't be Remembered: Brain Potentials Illuminate Successful Versus Unsuccessful Encoding for Same-Race and Other-Race Faces
Memory is often less accurate for faces from another racial group than for faces from one's own racial group. The mechanisms underlying this phenomenon are a topic of active debate. Contemporary theories invoke factors such as inferior expertise with faces from other racial groups and an encoding emphasis on race-specifying information. We investigated neural mechanisms of this memory bias by recording event-related potentials while participants attempted to memorize same-race and other-race faces. Brain potentials at encoding were compared as a function of successful versus unsuccessful recognition on a subsequent memory test. Late positive amplitudes predicted subsequent memory for same-race faces and, to a lesser extent, for other-race faces. By contrast, the amplitudes of earlier frontocentral N200 potentials and occipito-temporal P2 potentials were larger for later-remembered relative to later-forgotten other-race faces. Furthermore, N200 and P2 amplitudes were larger for other-race faces with features considered atypical of that race relative to faces that were race-stereotypical (according to a consensus from a large group of other participants). In keeping with previous reports, we infer that these earlier potentials index the processing of unique or individuating facial information, which is key to remembering a face. Individuation may tend to be uniformly high for same-race faces but lower and less reliable for other-race faces. Individuation may also be more readily applied for other-race faces that appear less stereotypical. These electrophysiological measures thus provide novel evidence that poorer memory for other-race faces stems from encoding that is inadequate because it fails to emphasize individuating information
- …
