180 research outputs found

    Advancements and future perspectives in nutrient film technique hydroponic system: a comprehensive review and bibliometric analysis

    Get PDF
    In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture. This bibliometric review examines the evolution of NFT research from 1977 to 2023, focusing on the growing interest in this method as a solution to the agricultural challenges posed by climate change. Through the analysis of 774 scientific documents, this review highlights an upward trend in NFT-related studies, with a noticeable shift from conference proceedings to peer-reviewed journal articles, particularly in recent years. Acta Horticulturae has been a leading journal in this field, underscoring the significance of early conference contributions. Lettuce and tomatoes have emerged as the primary crops studied in NFT systems, demonstrating the technique’s broad applicability. Research on lettuce has primarily focused on nitrate accumulation and biofortification, aiming to improve both the nutritional quality and safety of the crop. Studies on tomatoes have explored challenges related to oxygen concentration in the nutrient solution, where innovations such as the Nutrient Drip Technique (NDT) and the New Growing System (NGS) have shown promise in addressing these issues. Other key areas of NFT research include the effects of water salinity on crop growth and the integration of NFT with aquaponics systems, highlighting its potential for sustainable, water-efficient crop production. However, challenges such as nutrient imbalances and disease management persist. This review underscores the growing relevance of NFT in the pursuit of environmentally sustainable agriculture. Continued innovation and research are essential to optimizing nutrient management, refining environmental controls, and exploring new crop varieties, thereby enhancing the potential of NFT for sustainable farming systems

    Supplemental LED increases tomato yield in mediterranean semi-closed greenhouse

    Get PDF
    Supplemental light (SL) is a technique used to increase horticulture yield, especially in northern countries, where the Daily Light Integral (DLI) is a limiting factor during fall and winter, and which could also be used to obtain higher tomato yield at the mediterranean latitude. In this study, three tomato hybrid (F1) cultivars were grown for year-round production in a commercial semi-closed glasshouse in Southern Italy: two of the cherry fruit-type (‘Juanita’ and ‘Sorentyno’) and one mini plum fruit-type (‘Solarino’). From 120 to 243 days after transplant, light-emitting diode (LED) toplights were used as SL, with a photoperiod of 18 h. The main climatic parameters inside and outside the glasshouse were recorded, and tomato plants’ development and yield were examined. Plants grown with LEDs had longer stems as compared to control treatment (9.53 vs. 8.79 m), a higher stem thickness and yielded more trusses. On average, the yield was 21.7% higher with LEDs. ‘Sorentyno’ was the cultivar with the highest cumulated productivity when it was grown under SL. However, the cultivar with best light use efficiency under LEDs was ‘Solarino’. Therefore, supplemental LED from mid-December until march enhanced tomato growth and yield, opening a favorable scenario for large-scale application of this technology also in the mediterranean area

    Soilless system with supplementary LED light to obtain a high-quality out-of-season production of green beans

    Get PDF
    Green bean (Phaseolus vulgaris L.) is one of the most important sources of vegetable proteins in the world and it is cultivated all year round, but the light availability, during the dark sea-son, limited its growth. Nevertheless, recent studies conducted on greenhouse horticulture demonstrated that, with the application of light emitting diodes (LEDs) as supplementary light (SL) technology, it is possible to overcome this limitation. Consequently, during the experiment conducted, two cultivars of green bean (‘Saporro’ and ‘Maestrale’) were grown with a soilless system in a cold greenhouse during the fall-winter period. To increase the photoperiod and the daily light integral (DLI), early in the morning, four hours of red (R), blue (B) and red+blue (R+B) supplementary light were supplied by LEDs at 180 μmol·m−2·s−1 (PPFD) at plants level. Plants grown under LEDs improved the yield and the gas exchange system compared with the plants grown under natural light; when B light was supplied as a sole source of SL, it increased the dry matter content and the bright-ness (L*) of the pods. Between the cultivars, ‘Maestrale’ produced 20 g·plant−1 of pods more than ‘Saporro’ but the latter’s colour was brighter (L*) and greener (a*), and ‘Saporro’ also showed the highest photosynthetic efficiency (ΦPSII). In conclusion, ‘Maestrale’ and ‘Saporro’ obtained encouraging out-of-season yields under different LED spectra, but among those B light seems to improve overall crop performances and pods quality

    Integrating maintenance and energy problems through a Digital Twin-based decision support framework under the guidance of Asset Management

    Get PDF
    In a world where more than one third of the global energy consumption is directed to the industry sector, manufacturing companies must overhaul their business processes to move towards the improvement of sustainable performance. This work aims to contribute to this direction by integrating maintenance and energy problems through a Digital Twin-based decision support framework under the guiding role of Asset Management. The framework is meant as guideline for manufacturing companies to manage the integrated decision-making process and the related information flows and functional blocks. Maintenance or energy policies should consider both maintenance and energy objectives, handling the complexity and knowledge required for such an integration. A focus is given to the maintenance policy setting at the current release of the framework. This latter is tested and validated by an initial proof in a laboratory setting. In the future, it should be evaluated in its benefits within an industrial case

    Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes

    Get PDF
    High-tech greenhouses and artificial light applications aim to improve food production, in line with one of the sustainable development goals of the UN Agenda 2030, namely, “zero hunger”. In the past, the incandescent lamps have been used for supplementary lighting (SL) at higher latitudes to increase greenhouse production during the dark season. Light-emitting diodes (LED) have been replacing gas discharge and incandescent lamps, and their development is expanding SL applications in different agricultural scenarios (e.g., urban farming, middle latitudes). In fact, recent research on LED applications in Mediterranean greenhouses have produced encouraging results. Since middle latitudes have a higher daily light integral (DLI) than higher latitudes in the dark season and climate conditions influence the installed power load of greenhouses, LED installation and management in Mediterranean greenhouses should be different and less expensive in terms of investment and energy consumption. Accordingly, the aim of this review is to outline the state of the art in LED applications and development, with a focus on latitude-related requirements. Tomato was used as a representative crop

    Genotype-Specific Response to Silicon Supply in Young Tomato and Unripe Melon Plants Grown in a Floating System

    Get PDF
    Agronomic biofortification of crops is a promising approach for the accumulation of Si in plant organs and can be achieved through the application of Si-containing fertilizers in the nutrient solution (NS) using a soilless technique. In the present research, a local variety of Cucumis melo L. called Carosello and two tomato hybrids, ‘Alfa 200’ (TA) and ‘Versus’ (TV), were cultivated in a floating system with three levels of Si (0, 50, and 100 mg·L−1) in the NS with the aim to study the Si translocation/accumulation in leaves, stems, and roots of these genotypes. In general, by adding Si to the NS, Si accumulation in plants increased. Regarding Si translocation, it was found that Carosello exhibited a better translocation capacity than tomato hybrids, and Si movement from roots to shoots was very much dependent on tomato genotypes. With the highest Si content in the NS, TA had a similar Si concentration in leaves and stems, while TV showed a greater Si concentration in leaves. In conclusion, Carosello landrace is confirmed as a good Si accumulator, while the tomato is confirmed as a species with low Si accumulation capacity. Nevertheless, the effectiveness of Si biofortification in tomatoes is very much dependent on the genotype

    Metodologías del diseño en la promoción de aprendizaje organizacional

    Get PDF
    Design as a phenomenological discipline is emerging in the current scenario, as a creating mechanism of synergies between companies and universities. Many times, these relationships are based in an internal organizational processes review. In this context, design methodologies can establish new standards of organizational learning, creating forms of fluid and creative participation across sectors and skills. To illustrate this perspective, we present a learning model based on education through the practice ofthe reflective project, using the tool of the Workshop - important methodological tool for creative learning Strategic Design. Thus, this paper presents case studies of experiences of projective Workshops conducted in collaboration with the plastic shoe brand Melissa. The results were innovative, both in terms of organizational education, as in the sense of establishing new understanding of the design parameters for the designers of the brand.El diseño como disciplina fenomenológica surge en el escenario actual como mecanismo de creación de relaciones sinérgicas entre empresas y universidades. Muchas veces estas relaciones tienen sus bases en una revisión de los procesos internos de las organizaciones. En este contexto, las metodologías del diseño pueden establecer nuevos parámetros de aprendizaje organizacional, creando formas de participación fluida y creativa a través de sectores y competencias. Para ilustrar esta perspectiva, presentamos un modelode aprendizaje basado en la educación a través de la práctica del proyecto reflexivo utilizando la herramienta del Workshop, notable instrumento metodológico de aprendizaje creativo del Diseño Estratégico. De esta manera, este trabajo presenta el estudio de casos de experiencias proyectuales de los Workshops llevados a cabo en colaboración con la marca de calzado de plástico Melissa. Los resultados fueron soluciones innovadoras, tanto en el ámbito de la educación organizacional, como en el campo de aplicación de nuevosparámetros de comprensión del diseño para los diseñadores de la marca.O design como disciplina fenomenológica surge, no cenário atual, como mecanismo de criação de relações sinérgicas entre empresas e universidades. Muitas vezes, estas relações têm suas bases numa revisão dos processos internos das organizações. Neste contexto, as metodologias do design podem estabelecer novos parâmetros de aprendizagem organizacional, criando formas de participação fluida e criativa através de setores e competências. Para ilustrar essa perspectiva, apresentamos um modelo de aprendizagem baseado na educação através da prática do projeto/reflexivo, utilizando a ferramenta do Workshop, importante instrumento metodológico de aprendizagem criativa do Design Estratégico. Desta maneira. Este trabalho apresenta o estudo de casos das experiências projetivas dos Workshops feitos em colaboração com a marca de sapatos de plástico Melissa. Os resultados foram soluções inovadoras, tanto no sentido de educação organizacional,como no sentido de estabelecer novos parâmetros de compreensão do design para os projetistas da marca

    Yield and quality characteristics of brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution

    Get PDF
    Microgreens are gaining more and more interest, but little information is available on the effects of the chemical composition of the nutrient solution on the microgreen yield. In this study, three Brassica genotypes (B. oleracea var. italica, B. oleracea var. botrytis, and Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort) were fertigated with three modified strength Hoagland nutrient solutions (1/2, 1/4, and 1/8 strength) or with three modified half-strength Hoagland nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Microgreen yields and content of inorganic ions, dietary fiber, proteins, alpha;-tocopherol, and β-carotene were evaluated. Micro cauliflower showed the highest yield, as well as a higher content of mineral elements and alpha;-tocopherol (10.4 mg 100 g-1 fresh weight (FW)) than other genotypes. The use of nutrient solution at half strength gave both a high yield (0.23 g cm-2) and a desirable seedling height. By changing the NH4:NO3 molar ratio in the nutrient solution, no differences were found on yield and growing parameters, although the highest β-carotene content (6.3 mg 100 g-1 FW) was found by using a NH4:NO3 molar ratio of 25:75. The lowest nitrate content (on average 6.8 g 100 g-1 dry weight) was found in micro broccoli and micro broccoli raab by using a nutrient solution with NH4:NO3 molar ratios of 25:75 and 5:95, respectively. Micro cauliflower fertigated with a NH4:NO3 molar ratio of 25:75 showed the highest dry matter (9.8 g 100 g-1 FW) and protein content (4.2 g 100 g-1 FW)

    Supplementary Far-Red Light Did Not Affect Tomato Plant Growth or Yield under Mediterranean Greenhouse Conditions

    Get PDF
    In the Mediterranean region, tomato plants are often cultivated in two short cycles per year to avoid the heat of summer and the low solar radiation of winter. Supplementary light (SL) makes it possible to cultivate during the dark season. In this experiment, a tomato F1 hybrid cultivar DRW7723 was cultivated in a greenhouse for a fall-winter cycle. After transplant, light emitting diode (LED) interlighting, with two light spectra (red + blue vs. red + blue + far-red) was applied as SL. Plant growth, yield, gas exchange, nutrient solution (NS) consumption, and fruit quality were analyzed. In general, the eects of adding far-red radiation were not visible on the parameters analyzed, although the yield was 27% higher in plants grown with SL than those grown without. Tomatoes had the same average fresh weight between SL treatments, but the plants grown with SL produced 16% more fruits than control. Fruit quality, gas exchange and NS uptake were not influenced by the addition of far-red light. Interlighting is, therefore, a valid technique to increase fruit production in winter but at our latitude the eects of adding far-red radiation are mitigated by available sunlight

    Extraseasonal production in a soilless system and characterisation of landraces of carosello and barattiere (Cucumis melo l.)

    Get PDF
    Barattiere and Carosello are typical melon (Cucumis melo L.) landraces of Puglia’s (South-ern Italy) biodiversity. Their unripe fruits are locally consumed as an alternative to cucumbers (C. sativus L.) and are appreciated for their qualitative profile. Nevertheless, they are underutilized crops. For the high variability and confusing denominations, a morphological characterization is essential to discriminate and valorise landraces; additionally, it is fundamental to implement the agronomic technique to allow the cultivation outside the natural growth period (summer) by soilless cultivation. Two genotypes of Barattiere (‘Allungato’ and ‘Tondo’), two of Carosello (‘Scopatizzo’ and ‘Tomentoso’ (CAT)) and two of cucumber (‘Baby Star’ and ‘Modan’ hybrids) were vertically grown in the winter–spring period in a rockwool soilless system in a glasshouse with supplemental light. Lan-draces were characterized by morpho-physiological descriptors of melon; fruit biometrics and colour were analysed for all genotypes; productive parameters, leaf fluorescence, and chlorophyll content were measured. Genotypes varied in seeds, stem, leaf, fruit traits and they were andromonoecious; Carosello flowered earlier and produced more than Barattiere; CAT fruits were hairy and elongate, while other genotypes tended to rounder and glabrous fruits. Although landraces grew slower than cucumbers, both produced marketable fruits and the production of Carosello was comparable to cucumbers. In conclusion, Barattiere and Carosello have a productive potential and one vertically trained stem in a soilless system is appropriate for their extra-seasonal production
    corecore