6,936 research outputs found
Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 Acta Materialia Inc.The aim of this study was to investigate an in vivo tissue response to a biodegradable polyesterurethane, specifically the cellular and angiogenic response evoked by varying implant architectures in a subcutaneous rabbit implant model. A synthetic biodegradable polyesterurethane was synthesized and processed into three different configurations: a non-porous film, a porous mesh and a porous membrane. Glutaraldehyde cross-linked bovine pericardium was used as a control. Sterile polyesterurethane and control samples were implanted subcutaneously in six rabbits (n = 12). The rabbits were killed at 21 and 63 days and the implant sites were sectioned and histologically stained using haemotoxylin and eosin (H&E), Masson’s trichrome, picosirius red and immunostain CD31. The tissue–implant interface thickness was measured from the H&E slides. Stereological techniques were used to quantify the tissue reaction at each time point that included volume fraction of inflammatory cells, fibroblasts, fibrocytes, collagen and the degree of vascularization. Stereological analysis inferred that porous scaffolds with regular topography are better tolerated in vivo compared to non-porous scaffolds, while increasing scaffold porosity promotes angiogenesis and cellular infiltration. The results suggest that this biodegradable polyesterurethane is better tolerated in vivo than the control and that structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture.Irish Research Council for Science, Engineering and Technology: funded by the National Development Plan. Enterprise Ireland: Research Innovation Partnership
The Exotic Barium Bismuthates
We review the remarkable properties, including superconductivity,
charge-density-wave ordering, and metal-insulator transitions, of lead- and
potassium-doped barium bismuthate. We discuss some of the early theoretical
studies of these systems. Our recent theoretical work, on the negative-U\/,
extended-Hubbard model for these systems, is also described. Both the large-
and intermediate-U\/ regimes of this model are examined, using mean-field and
random-phase approximations, particularly with a view to fitting various
experimental properties of these bismuthates. On the basis of our studies, we
point out possibilities for exotic physics in these systems. We also emphasize
the different consequences of electronic and phonon-mediated mechanisms for the
negative U.\/ We show that, for an electronic mechanism, the \secin
\,\,phases of these bismuthates must be unique, with their transport properties
{\it dominated by charge Cooperon bound states}. This can explain the
observed difference between the optical and transport gaps. We propose other
experimental tests for this novel mechanism of charge transport and comment on
the effects of disorder.Comment: UUencoded LaTex file, 122 pages, figures available on request To
appear in Int. J. Mod. Phys. B as a review articl
Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India.
Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks
2D Lattice Liquid Models
A family of novel models of liquid on a 2D lattice (2D lattice liquid models)
have been proposed as primitive models of soft-material membrane. As a first
step, we have formulated them as single-component, single-layered, classical
particle systems on a two-dimensional surface with no explicit viscosity. Among
the family of the models, we have shown and constructed two stochastic models,
a vicious walk model and a flow model, on an isotropic regular lattice and on
the rectangular honeycomb lattice of various sizes. In both cases, the dynamics
is governed by the nature of the frustration of the particle movements. By
simulations, we have found the approximate functional form of the frustration
probability, and peculiar anomalous diffusions in their time-averaged mean
square displacements in the flow model. The relations to other existing
statistical models and possible extensions of the models are also discussed.Comment: REVTeX4, 14 pages in double colomn, 12 figures; added references with
some comments, typos fixe
- …
