361 research outputs found

    Regenerative Response of Degenerate Human Nucleus Pulposus Cells to GDF6 Stimulation

    Get PDF
    Growth differentiation factor (GDF) family members have been implicated in the development and maintenance of healthy nucleus pulposus (NP) tissue, making them promising therapeutic candidates for treatment of intervertebral disc (IVD) degeneration and associated back pain. GDF6 has been shown to promote discogenic differentiation of mesenchymal stem cells, but its effect on NP cells remains largely unknown. Our aim was to investigate GDF6 signalling in adult human NP cells derived from degenerate tissue and determine the signal transduction pathways critical for GDF6-mediated phenotypic changes and tissue homeostatic mechanisms. This study demonstrates maintained expression of GDF6 receptors in human NP and annulus fibrosus (AF) cells across a range of degeneration grades at gene and protein level. We observed an anabolic response in NP cells treated with recombinant GDF6 (increased expression of matrix and NP-phenotypic markers; increased glycosaminoglycan production; no change in catabolic enzyme expression), and identified the signalling pathways involved in these responses (SMAD1/5/8 and ERK1/2 phosphorylation, validated by blocking studies). These findings suggest that GDF6 promotes a healthy disc tissue phenotype in degenerate NP cells through SMAD-dependent and -independent (ERK1/2) mechanisms, which is important for development of GDF6 therapeutic strategies for treatment of degenerate discs.</jats:p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Increased peri-ductal collagen micro-organization may contribute to raised mammographic density

    Get PDF
    BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users

    Preclinical Efficacy of Cabazitaxel Loaded Poly (2-alkyl cyanoacrylate) Nanoparticle Variants

    Get PDF
    \ua9 2024 Valsalakumari et al. This work is published and licensed by Dove Medical Press Limited.Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response

    Delivery of a Small for Gestational Age Infant and Greater Maternal Risk of Ischemic Heart Disease

    Get PDF
    Background: Delivery of a small for gestational age (SGA) infant has been associated with increased maternal risk of ischemic heart disease (IHD). It is uncertain whether giving birth to SGA infant is a specific determinant of later IHD, independent of other risk factors, or a marker of general poor health. The purpose of this study was to investigate the association between delivery of a SGA infant and maternal risk for IHD in relation to traditional IHD risk factors. Methods and Findings: Risk of maternal IHD was evaluated in a population based cross-sectional study of 6,608 women with a prior live term birth who participated in the National Health and Nutrition Examination Survey (1999–2006), a probability sample of the U.S. population. Sequence of events was determined from age at last live birth and at diagnosis of IHD. Delivery of a SGA infant is strongly associated with greater maternal risk for IHD (age adjusted OR; 95 % CI: 1.8; 1.2, 2.9; p = 0.012). The association was independent of the family history of IHD, stroke, hypertension and diabetes (family historyadjusted OR; 95 % CI: 1.9; 1.2, 3.0; p = 0.011) as well as other risk factors for IHD (risk factor-adjusted OR; 95 % CI: 1.7; 1.1, 2.7; p = 0.025). Delivery of a SGA infant was associated with earlier onset of IHD and preceded it by a median of 30 (interquartile range: 20, 36) years. Conclusions: Giving birth to a SGA infant is strongly and independently associated with IHD and a potential risk factor that precedes IHD by decades. A pregnancy that produces a SGA infant may induce long-term cardiovascular changes tha

    Hemispheric Asymmetry in White Matter Connectivity of the Temporoparietal Junction with the Insula and Prefrontal Cortex

    Get PDF
    The temporoparietal junction (TPJ) is a key node in the brain's ventral attention network (VAN) that is involved in spatial awareness and detection of salient sensory stimuli, including pain. The anatomical basis of this network's right-lateralized organization is poorly understood. Here we used diffusion-weighted MRI and probabilistic tractography to compare the strength of white matter connections emanating from the right versus left TPJ to target regions in both hemispheres. Symmetry of structural connectivity was evaluated for connections between TPJ and target regions that are key cortical nodes in the right VAN (insula and inferior frontal gyrus) as well as target regions that are involved in salience and/or pain (putamen, cingulate cortex, thalamus). We found a rightward asymmetry in connectivity strength between the TPJ and insula in healthy human subjects who were scanned with two different sets of diffusion-weighted MRI acquisition parameters. This rightward asymmetry in TPJ-insula connectivity was stronger in females than in males. There was also a leftward asymmetry in connectivity strength between the TPJ and inferior frontal gyrus, consistent with previously described lateralization of language pathways. The rightward lateralization of the pathway between the TPJ and insula supports previous findings on the roles of these regions in stimulus-driven attention, sensory awareness, interoception and pain. The findings also have implications for our understanding of acute and chronic pains and stroke-induced spatial hemineglect

    Effect of Audiovisual Training on Monaural Spatial Hearing in Horizontal Plane

    Get PDF
    The article aims to test the hypothesis that audiovisual integration can improve spatial hearing in monaural conditions when interaural difference cues are not available. We trained one group of subjects with an audiovisual task, where a flash was presented in parallel with the sound and another group in an auditory task, where only sound from different spatial locations was presented. To check whether the observed audiovisual effect was similar to feedback, the third group was trained using the visual feedback paradigm. Training sessions were administered once per day, for 5 days. The performance level in each group was compared for auditory only stimulation on the first and the last day of practice. Improvement after audiovisual training was several times higher than after auditory practice. The group trained with visual feedback demonstrated a different effect of training with the improvement smaller than the group with audiovisual training. We conclude that cross-modal facilitation is highly important to improve spatial hearing in monaural conditions and may be applied to the rehabilitation of patients with unilateral deafness and after unilateral cochlear implantation
    corecore