464 research outputs found
A Randomized Kernel-Based Secret Image Sharing Scheme
This paper proposes a ()-threshold secret image sharing scheme that
offers flexibility in terms of meeting contrasting demands such as information
security and storage efficiency with the help of a randomized kernel (binary
matrix) operation. A secret image is split into shares such that any or
more shares () can be used to reconstruct the image. Each share has a
size less than or at most equal to the size of the secret image. Security and
share sizes are solely determined by the kernel of the scheme. The kernel
operation is optimized in terms of the security and computational requirements.
The storage overhead of the kernel can further be made independent of its size
by efficiently storing it as a sparse matrix. Moreover, the scheme is free from
any kind of single point of failure (SPOF).Comment: Accepted in IEEE International Workshop on Information Forensics and
Security (WIFS) 201
Towards a Simplified Perceptual Quality Metric for Watermarking Applications
International audienceThis work is motivated by the limitations of statistical quality metrics to assess the quality of images distorted in distinct frequency range. Common quality metrics, which basically have been designed and tested for various kind of global distortions, such as image coding may not be efficient for watermarking applications, where the distortions might be restricted in a very narrow portion of the frequency spectrum. We hereby want to propose an objective quality metric which performances do not depend on the distortion frequency range, but we nevertheless want to provide a simplified objective quality metric in opposition to the complex HVS based quality metrics recently made available. The proposed algorithm is generic (not designed for a particular distortion), and exploits the contrast sensitivity function (CSF) along with an adapted Minkowski error pooling. The results show a high correlation between the proposed objective metric and the mean opinion score (MOS). A comparison with relevant existing objective quality metrics is provided
Space non-invariant point-spread function and its estimation in fluorescence microscopy
In this research report, we recall briefly how the diffraction-limited nature of an optical microscope's objective, and the intrinsic noise can affect the observed images' resolution. A blind deconvolution algorithm can restore the lost frequencies beyond the diffraction limit. However, under other imaging conditions, the approximation of aberration-free imaging, is not applicable, and the phase aberrations of the emerging wavefront from a specimen immersion medium cannot be ignored any more. We show that an object's location and its original intensity distribution can be recovered by retrieving the refracted wavefront's phase from the observed intensity images. We demonstrate this by retrieving the point-spread function from an imaged microsphere. The noise and the influence of the microsphere size can be mitigated and sometimes completely removed from the observed images by using a maximum a posteriori estimate. However, due to the incoherent nature of the acquisition system, phase retrieval from the observed intensities will be possible only if the phase is constrained. We have used geometrical optics to model the phase of the refracted wavefront, and tested the algorithm on some simulated images
Validation of multi-channel scanning microwave radiometer on-board Oceansat-I
Sea surface temperature (SST), sea surface wind speed (WS) and columnar water vapour (WV) derived from Multi-frequency Scanning Microwave Radiometer (MSMR) sensor on-board IRS-P4 (Oceansat-I) were validated against the in situ measurements from ship, moored buoy (MB), drifting buoy (DB) and autonomous weather station (AWS). About 1400 satellite in situ match-ups were used for the validation of SST and WS, while only 60 match-ups were available for the validation of WV. Therefore specific humidity, Q a was used as a proxy for validating WV. The drifting buoy SSTs showed good correlation with the satellite values (r = 0.84). The correlation of MB SSTs was better during night when the WS varied between 0 and 10 m/s. During the day, correlation peaked for higher wind speeds (> 10 m/s). MB (r > 0.80) was relatively better than AWS (r � 0.70) and ship (r < 0.50) for validating satellite-derived WS. Daytime winds exhibited better correlation with satellite values when measured from ocean platforms (MB and ship), but the winds measured from land-based platforms (AWS) were closer to satellite values during night-time. Q a values consistently showed higher correlation with satellite values during night-time. The low root mean square deviation (RMSD) of DB SST (1.17°C) and MB WS (1.52 m s -1) is within the achievable accuracy of the microwave sensor when validated with data collected over the tropical Indian Ocean. The RMSD of Q a (1.81 g kg -1), however, falls much beyond the attainable accuracy of the microwave sensor
Clindamycin-modified Triple Antibiotic Nanofibers: A Stain-free Antimicrobial Intracanal Drug Delivery System
INTRODUCTION:
A biocompatible strategy to promote bacterial eradication within the root canal system after pulpal necrosis of immature permanent teeth is critical to the success of regenerative endodontic procedures. This study sought to synthesize clindamycin-modified triple antibiotic (metronidazole, ciprofloxacin, and clindamycin [CLIN]) polymer (polydioxanone [PDS]) nanofibers and determine in vitro their antimicrobial properties, cell compatibility, and dentin discoloration.
METHODS:
CLIN-only and triple antibiotic CLIN-modified (CLIN-m, minocycline-free) nanofibers were processed via electrospinning. Scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and tensile testing were performed to investigate fiber morphology, antibiotic incorporation, and mechanical strength, respectively. Antimicrobial properties of CLIN-only and CLIN-m nanofibers were assessed against several bacterial species by direct nanofiber/bacteria contact and over time based on aliquot collection up to 21 days. Cytocompatibility was measured against human dental pulp stem cells. Dentin discoloration upon nanofiber exposure was qualitatively recorded over time. The data were statistically analyzed (P < .05).
RESULTS:
The mean fiber diameter of CLIN-containing nanofibers ranged between 352 ± 128 nm and 349 ± 128 nm and was significantly smaller than PDS fibers. FTIR analysis confirmed the presence of antibiotics in the nanofibers. Hydrated CLIN-m nanofibers showed similar tensile strength to antibiotic-free (PDS) nanofibers. All CLIN-containing nanofibers and aliquots demonstrated pronounced antimicrobial activity against all bacteria. Antibiotic-containing aliquots led to a slight reduction in dental pulp stem cell viability but were not considered toxic. No visible dentin discoloration upon CLIN-containing nanofiber exposure was observed.
CONCLUSIONS:
Collectively, based on the remarkable antimicrobial effects, cell-friendly, and stain-free properties, our data suggest that CLIN-m triple antibiotic nanofibers might be a viable alternative to minocycline-based antibiotic pastes
Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study
Composite fibrous electrospun membranes based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and transmission electron microscopies, which respectively confirmed the submicron fibrous arrangement of the membranes and the successful incorporation of BBG particles. Selected mechanical properties of the membranes were evaluated using the suture pullout test. The addition of BBG at 10 wt % led to similar stiffness, but more importantly, it led to a significantly stronger (2.37 ± 0.51 N mm) membrane when compared with the commercially available Epiguide® (1.06 ± 0.24 N mm) under hydrated conditions. Stability (shrinkage) was determined after incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to that of Epiguide (14.28%). Cell proliferation assays demonstrated a higher rate of preosteoblasts proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4- to 5.8-fold) and EpiGuide (4.5-fold), following 7 days of in vitro culture. Collectively, our results demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and proliferation-a promising attribute in GBR
Propulsion/airframe interference for ducted propfan engines with ground effect
The advanced propfan propulsion systems design of the next-generation subsonic transport aircraft has been of interest to many airline companies in the past several years. This is due to the studies which indicate that an efficient ducted propfan engine technology offers a significant reduction in aircraft fuel consumption. However, because of the geometric complexity of the configuration, one challenge is the integration of the ducted propfan engine with the airframe so that aerodynamic interference effects frequently encountered near the nacelle can be minimized, or perhaps, optimized. To understand this interaction phenomenon better, it is desirable to have a reliable and efficient computational tool that can predict propeller effects on the flowfield around complex configurations
- …
