2,302 research outputs found

    Identification of the major cause of endemically poor mobilities in SiC/SiO2 structures

    Full text link
    Materials with good carrier mobilities are desired for device applications, but in real devices the mobilities are usually limited by the presence of interfaces and contacts. Mobility degradation at semiconductor-dielectric interfaces is generally attributed to defects at the interface or inside the dielectric, as is the case in Si/SiO2 structures, where processing does not introduce detrimental defects in the semiconductor. In the case of SiC/SiO2 structures, a decade of research focused on reducing or passivating interface and oxide defects, but the low mobilities have persisted. By invoking theoretical results and available experimental evidence, we show that thermal oxidation generates carbon di-interstitial defects inside the semiconductor substrate and that they are a major cause of the poor mobility in SiC/SiO2 structures

    Mapping the wavefunction of transition metal acceptor states in the GaAs surface

    Full text link
    We utilize a single atom substitution technique with spectroscopic imaging in a scanning tunneling microscope (STM) to visualize the anisotropic spatial structure of magnetic and non-magnetic transition metal acceptor states in the GaAs (110) surface. The character of the defect states play a critical role in the properties of the semiconductor, the localization of the states influencing such things as the onset of the metal-insulator transition, and in dilute magnetic semiconductors the mechanism and strength of magnetic interactions that lead to the emergence of ferromagnetism. We study these states in the GaAs surface finding remarkable similarities between the shape of the acceptor state wavefunction for Mn, Fe, Co and Zn dopants, which is determined by the GaAs host and is generally reproduced by tight binding calculations of Mn in bulk GaAs [Tang, J.M. & Flatte, M.E., Phys. Rev. Lett. 92, 047201 (2004)]. The similarities originate from the antibonding nature of the acceptor states that arise from the hybridization of the impurity d-levels with the host. A second deeper in-gap state is also observed for Fe and Co that can be explained by the symmetry breaking of the surface.Comment: 19 pages, 6 figure

    Modelling and simulation of solids

    Get PDF

    Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula

    Get PDF
    Standard first principles calculations of transport through single molecules miss exchange-correlation corrections to the Landauer formula. From Kubo response theory, both the Landauer formula and these corrections in the limit of zero bias are derived and calculations are presented.Comment: 4 pages, 3 figures, final version to appear in Phys. Rev. B, Rapid Communication

    Variability of structural and electronic properties of bulk and monolayer Si2Te3

    Full text link
    Since the emergence of monolayer graphene as a promising two-dimensional material, many other monolayer and few-layer materials have been investigated extensively. An experimental study of few-layer Si2Te3 was recently reported, showing that the material has diverse properties for potential applications in Si-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors. This material has a unique layered structure: it has a hexagonal closed-packed Te sublattice, with Si dimers occupying octahedral intercalation sites. Here we report a theoretical study of this material in both bulk and monolayer form, unveiling a fascinating array of diverse properties arising from reorientations of the silicon dimers between planes of Te atoms. The lattice constant varies up to 5% and the band gap varies up to 40% depending on dimer orientations. The monolayer band gap is 0.4 eV larger than the bulk-phase value for the lowest-energy configuration of Si dimers. These properties are, in principle, controllable by temperature and strain, making Si2T3 a promising candidate material for nanoscale mechanical, optical, and memristive devices.Comment: 9 pages, 4 figure
    corecore