607 research outputs found
Modelling the evolution of excess dislocations during plastic deformation and their effect on work-hardening (invited talk)
Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage
Scaling in Plasticity-Induced Cell-Boundary Microstructure: Fragmentation and Rotational Diffusion
We develop a simple computational model for cell boundary evolution in
plastic deformation. We study the cell boundary size distribution and cell
boundary misorientation distribution that experimentally have been found to
have scaling forms that are largely material independent. The cell division
acts as a source term in the misorientation distribution which significantly
alters the scaling form, giving it a linear slope at small misorientation
angles as observed in the experiments. We compare the results of our simulation
to two closely related exactly solvable models which exhibit scaling behavior
at late times: (i) fragmentation theory and (ii) a random walk in rotation
space with a source term. We find that the scaling exponents in our simulation
agree with those of the theories, and that the scaling collapses obey the same
equations, but that the shape of the scaling functions depend upon the methods
used to measure sizes and to weight averages and histograms
Identifying individual subgrains in evolving deformation structures by high angular resolution X-ray diffraction
Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization
This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure
- …
