607 research outputs found

    Scaling in Plasticity-Induced Cell-Boundary Microstructure: Fragmentation and Rotational Diffusion

    Full text link
    We develop a simple computational model for cell boundary evolution in plastic deformation. We study the cell boundary size distribution and cell boundary misorientation distribution that experimentally have been found to have scaling forms that are largely material independent. The cell division acts as a source term in the misorientation distribution which significantly alters the scaling form, giving it a linear slope at small misorientation angles as observed in the experiments. We compare the results of our simulation to two closely related exactly solvable models which exhibit scaling behavior at late times: (i) fragmentation theory and (ii) a random walk in rotation space with a source term. We find that the scaling exponents in our simulation agree with those of the theories, and that the scaling collapses obey the same equations, but that the shape of the scaling functions depend upon the methods used to measure sizes and to weight averages and histograms

    Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization

    Get PDF
    This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure
    corecore