16 research outputs found

    Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

    No full text
    © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. This study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermal treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. These results show that altering the mechanical properties of Al particles affects their reactivity

    On the Pressure Generated by Thermite Reactions Using Stress-Altered Aluminum Particles

    No full text
    This study examines pressure build-up and decay in thermites upon impact ignition and interprets reactivity based on the holistic pressure history. The thermite is a mixture of aluminum (Al) combined with bismuth trioxide (Bi2O3) powder. Four different Al particles sizes were examined that ranged from 100 nm to 18.5 μm mean diameter and for each size, two different Al powder treatments were examined: stress-altered compared to untreated, as-received Al powder. Stress-altered Al powders have been shown to be more reactive, such that the stress-altered Al powder thermites offer a metric for analyzing thermite reactivity in terms of pressure development compared to untreated Al powder. In a binary thermite system, multiple phase changes and interface chemistry influence the transient pressure response during reaction. Results reveal three key pressure metrics that need consideration specifically for thermite combustion: (1) delay time to peak pressure, (2) peak pressure, and (3) decay after peak pressure. Our experiments show that a lower peak pressure corresponds with higher thermite reactivity because aluminum consumption of oxygen generated by decomposing solid oxidizer reduces the peak pressure. Faster rates of reaction consume oxygen at higher rates such that pressure development becomes more limited than less reactive thermites and the result is a lower peak pressure. This conclusion is opposite of traditional studies using metal fuels with a gaseous environment that typically show higher peak pressures correspond with greater reactivity

    PTFE–Al2O3 reactive interaction at high heating rates

    No full text
    Differential scanning calorimetry and a high-speed temperature scanner were used to characterize dynamic features of the reaction between polytetrafluoroethylene (PTFE) and Al2O3 under heating rates ranging between 20 and 780 °C min−1. Exothermic reaction behavior between PTFE and Al2O3 was observed at heating rates of 150 °C min−1 and higher. Thermodynamic calculations predicted an adiabatic temperature of 1,425 K for the PTFE/Al2O3 stoichiometric ratio. At lower heating rates, endothermic decomposition of PTFE dominated the interaction, where PTFE decomposes into gaseous products that escape the system without interacting with alumina. The enthalpy of the PTFE–Al2O3 exothermic reaction was estimated to be −103 kJ mol−1 with activation energy of 21 kJ mol−1. This study shows that, for energetic formulation of Al–PTFE, the Al2O3 layer on the aluminum particles can exothermically react with PTFE, producing AlF3 and carbon monoxide
    corecore