5,652 research outputs found
A Community Microgrid Architecture with an Internal Local Market
This work fits in the context of community microgrids, where members of a
community can exchange energy and services among themselves, without going
through the usual channels of the public electricity grid. We introduce and
analyze a framework to operate a community microgrid, and to share the
resulting revenues and costs among its members. A market-oriented pricing of
energy exchanges within the community is obtained by implementing an internal
local market based on the marginal pricing scheme. The market aims at
maximizing the social welfare of the community, thanks to the more efficient
allocation of resources, the reduction of the peak power to be paid, and the
increased amount of reserve, achieved at an aggregate level. A community
microgrid operator, acting as a benevolent planner, redistributes revenues and
costs among the members, in such a way that the solution achieved by each
member within the community is not worse than the solution it would achieve by
acting individually. In this way, each member is incentivized to participate in
the community on a voluntary basis. The overall framework is formulated in the
form of a bilevel model, where the lower level problem clears the market, while
the upper level problem plays the role of the community microgrid operator.
Numerical results obtained on a real test case implemented in Belgium show
around 54% cost savings on a yearly scale for the community, as compared to the
case when its members act individually.Comment: 16 pages, 15 figure
A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders
The European market clearing problem is characterized by a set of
heterogeneous orders and rules that force the implementation of heuristic and
iterative solving methods. In particular, curtailable block orders and the
uniform purchase price (UPP) pose serious difficulties. A block is an order
that spans over multiple hours, and can be either fully accepted or fully
rejected. The UPP prescribes that all consumers pay a common price, i.e., the
UPP, in all the zones, while producers receive zonal prices, which can differ
from one zone to another.
The market clearing problem in the presence of both the UPP and block orders
is a major open issue in the European context. The UPP scheme leads to a
non-linear optimization problem involving both primal and dual variables,
whereas block orders introduce multi-temporal constraints and binary variables
into the problem. As a consequence, the market clearing problem in the presence
of both blocks and the UPP can be regarded as a non-linear integer programming
problem involving both primal and dual variables with complementary and
multi-temporal constraints.
The aim of this paper is to present a non-iterative and heuristic-free
approach for solving the market clearing problem in the presence of both
curtailable block orders and the UPP. The solution is exact, with no
approximation up to the level of resolution of current market data. By
resorting to an equivalent UPP formulation, the proposed approach results in a
mixed-integer linear program, which is built starting from a non-linear integer
bilevel programming problem. Numerical results using real market data are
reported to show the effectiveness of the proposed approach. The model has been
implemented in Python, and the code is freely available on a public repository.Comment: 15 pages, 7 figure
SiPM and front-end electronics development for Cherenkov light detection
The Italian Institute of Nuclear Physics (INFN) is involved in the
development of a demonstrator for a SiPM-based camera for the Cherenkov
Telescope Array (CTA) experiment, with a pixel size of 66 mm. The
camera houses about two thousands electronics channels and is both light and
compact. In this framework, a R&D program for the development of SiPMs suitable
for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different
photosensors have been produced at Fondazione Bruno Kessler (FBK), with
different micro-cell dimensions and fill factors, in different geometrical
arrangements. At the same time, INFN is developing front-end electronics based
on the waveform sampling technique optimized for the new NUV SiPM. Measurements
on 11 mm, 33 mm, and 66 mm NUV SiPMs
coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
The discovery of the Higgs boson
The Higgs boson identified at the CERN laboratories.Individuato presso i laboratori del CERN il bosone di Higgs
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Sizing distributed energy resources in a renewable energy community with a grid-aware internal market structure
This paper proposes a cooperative approach aimed at distributed energy resources sizing in a renewable energy community, with considerations of the community's optimal operation, impact on the electrical grid and an allocation of the benefits to its members. To this purpose, multiple investment modes are evaluated via a two-step procedure. In the first step, the size of renewable energy sources is determined by solving an optimization problem that maximizes community welfare, considering network and investments. In the second step, an optimization problem maximizing additional community member profit with price regularization is solved. This step shares benefits among community members. The potential of the proposed procedure is illustrated using a benchmark Dickert-LV network. This is a fully cooperative framework where the community operator is ensuring adequate grid operation, operational planning and sizing of new investments
A chance-constrained programming approach to optimal management of car-rental fleets of electric vehicles
In the current context of growing electrification of the transport sector, offering rental and sharing programs for electric vehicles is considered one of the strategies to achieve decarbonization targets. Such programs should be supported by suitable optimization tools to manage the vehicle fleet, and make rental provision profitable for its operator. In this paper, we consider a rental system having a single station for electric vehicle pickup and delivery. For this system, we address the operational problem of simultaneously assigning rental requests to vehicles and determining the charging policies during inactivity intervals. The objective is to maximize the profit for the operator by minimizing the costs for electricity. The considered problem is complicated by uncertainty regarding the battery energy level when a vehicle returns to the station. This leads to a chance-constrained programming formulation, where the request-to-vehicle assignment and charging policies are determined by minimizing electricity costs while ensuring that the energy demand of the served requests is met with a prescribed high probability. Since the formulated mixed-integer problem with probabilistic constraints is hard to solve, a suboptimal approach is proposed, consisting of two sequential steps. In the first step, request-to-vehicle assignment is accomplished via a suitably designed heuristic procedure. Then, for a given assignment, the charging policy of each vehicle is determined by solving a relaxed chance-constrained problem. Numerical results are presented to assess the performance of both the assignment procedure and the optimization problem which determines the electric vehicle charging policies
Anaesthetics modulate tumour necrosis factor α: effects of L-carnitine supplementation in surgical patients. Preliminary results.
Both anaesthetics and surgical trauma could strongly affect the production of tumour necrosis factor α (TNFα). During in vitro experiments the authors found that anaesthetics modulate the production of TNFα by peripheral blood mononuclear cells. Notably, Pentothal strongly increased the production of the cytokine as compared to both lipopolysacchride treated and control mononuclear cells, whereas in supernatants from Leptofen driven mononuclear cells TNFα was strongly reduced. On the other hand, Pavulon did not significantly affect the cytokine production. In the in vivo study, in an attempt to ameliorate the metabolic response to surgical trauma, L-carnitine was administered to 20 surgical patients, then the circulating TNFα was measured. The results indicate that the levels of circulating TNFα were strongly increased following surgery and that L-carnitine administration resulted in a strong reduction of TNFα. Thus, the data suggest that L-carnitine could be helpful in protecting surgical patients against dysmetabolism dependent on dysregulated production of TNFα
- …
