1,015 research outputs found
Model Wavefunctions for the Collective Modes and the Magneto-roton Theory of the Fractional Quantum Hall Effect
We construct model wavefunctions for the collective modes of fractional
quantum Hall systems. The wavefunctions are expressed in terms of symmetric
polynomials characterized by a root partition and a "squeezed" basis, and show
excellent agreement with exact diagonalization results for finite systems. In
the long wavelength limit, the model wavefunctions reduce to those predicted by
the single-mode approximation, and remain accurate at energies above the
continuum of roton pairs.Comment: 4 pages, 3 figures, minor changes for the final prl versio
Matrix Product States for Trial Quantum Hall States
We obtain an exact matrix-product-state (MPS) representation of a large
series of fractional quantum Hall (FQH) states in various geometries of genus
0. The states in question include all paired k=2 Jack polynomials, such as the
Moore-Read and Gaffnian states, as well as the Read-Rezayi k=3 state. We also
outline the procedures through which the MPS of other model FQH states can be
obtained, provided their wavefunction can be written as a correlator in a 1+1
conformal field theory (CFT). The auxiliary Hilbert space of the MPS, which
gives the counting of the entanglement spectrum, is then simply the Hilbert
space of the underlying CFT. This formalism enlightens the link between
entanglement spectrum and edge modes. Properties of model wavefunctions such as
the thin-torus root partitions and squeezing are recast in the MPS form, and
numerical benchmarks for the accuracy of the new MPS prescription in various
geometries are provided.Comment: 5 pages, 1 figure, published versio
Explicit construction of local conserved operators in disordered many-body systems
The presence and character of local integrals of motion—quasilocal operators that commute with the Hamiltonian—encode valuable information about the dynamics of a quantum system. In particular, strongly disordered many-body systems can generically avoid thermalization when there are extensively many such operators. In this work, we explicitly construct local conserved operators in one-dimensional spin chains by directly minimizing their commutator with the Hamiltonian. We demonstrate the existence of an extensively large set of local integrals of motion in the many-body localized phase of the disordered XXZ spin chain. These operators are shown to have exponentially decaying tails, in contrast to the ergodic phase where the decay is (at best) polynomial in the size of the subsystem. We study the algebraic properties of localized operators and confirm that in the many-body localized phase, they are well described by “dressed” spin operators
- …
