8,044 research outputs found
Hybrid Electro-Optically Modulated Microcombs
Optical frequency combs based on mode-locked lasers have proven to be
invaluable tools for a wide range of applications in precision spectroscopy and
metrology. A novel principle of optical frequency comb generation in
whispering-gallery mode microresonators ("microcombs") has been developed
recently, which represents a promising route towards chip-level integration and
out-of-the-lab use of these devices. Presently, two families of microcombs have
been demonstrated: combs with electronically detectable mode spacing that can
be directly stabilized, and broadband combs with up to octave-spanning spectra
but mode spacings beyond electronic detection limits. However, it has not yet
been possible to achieve these two key requirements simultaneously, as will be
critical for most microcomb applications. Here we present a key step to
overcome this problem by interleaving an electro-optic comb with the spectrum
from a parametric microcomb. This allows, for the first time, direct control
and stabilization of a microcomb spectrum with large mode spacing (>140 GHz)
with no need for an additional mode-locked laser frequency comb. The attained
residual 1-second-instability of the microcomb comb spacing is 10^-15, with a
microwave reference limited absolute instability of 10^-12 at a 140 GHz mode
spacing.Comment: 8 pages, 4 figures; accepted for publication in Physical Review
Letter
Faddeev-Merkuriev equations for resonances in three-body Coulombic systems
We reconsider the homogeneous Faddeev-Merkuriev integral equations for
three-body Coulombic systems with attractive Coulomb interactions and point out
that the resonant solutions are contaminated with spurious resonances. The
spurious solutions are related to the splitting of the attractive Coulomb
potential into short- and long-range parts, which is inherent in the approach,
but arbitrary to some extent. By varying the parameters of the splitting the
spurious solutions can easily be ruled out. We solve the integral equations by
using the Coulomb-Sturmian separable expansion approach. This solution method
provides an exact description of the threshold phenomena. We have found several
new S-wave resonances in the e- e+ e- system in the vicinity of thresholds.Comment: LaTeX with elsart.sty 13 pages, 5 figure
Random Matrix Filtering in Portfolio Optimization
We study empirical covariance matrices in finance. Due to the limited amount
of available input information, these objects incorporate a huge amount of
noise, so their naive use in optimization procedures, such as portfolio
selection, may be misleading. In this paper we investigate a recently
introduced filtering procedure, and demonstrate the applicability of this
method in a controlled, simulation environment.Comment: 9 pages with 3 EPS figure
- …
