1,302 research outputs found
Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas
Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v ≥ (ω + Ωce )/k are present; here Ωce denotes electron cyclotron frequency, ω the wave angular frequency and k the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j · E in the simulations, we follow the energy transfer between
the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ωce /(ωpe + Ωce ) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ωpe /(ωpe + Ωce ); here ωpe denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ωce > ωpe . The simulations also exhibit a spectral feature which may
correspond to observations of suprathermal narrowband emission at ωpe detected from low density tokamak plasmas
Fast growing double tearing modes in a tokamak plasma
Configurations with nearby multiple resonant surfaces have broad spectra of
linearly unstable coupled tearing modes with dominant high poloidal mode
numbers m. This was recently shown for the case of multiple q = 1 resonances
[Bierwage et al., Phys. Rev. Lett. 94 (6), 65001 (2005)]. In the present work,
similar behavior is found for double tearing modes (DTM) on resonant surfaces
with q >= 1. A detailed analysis of linear instability characteristics of DTMs
with various mode numbers m is performed using numerical simulations. The mode
structures and dispersion relations for linearly unstable modes are calculated.
Comparisons between low- and higher-m modes are carried out, and the roles of
the inter-resonance distance and of the magnetic Reynolds number S_Hp are
investigated. High-m modes are found to be destabilized when the distance
between the resonant surfaces is small. They dominate over low-m modes in a
wide range of S_Hp, including regimes relevant for tokamak operation. These
results may be readily applied to configurations with more than two resonant
surfaces.Comment: 11 pages, 15 figure
Dynamics of resistive double tearing modes with broad linear spectra
The nonlinear evolution of resistive double tearing modes (DTMs) with safety
factor values q=1 and q=3 is studied in a reduced cylindrical model of a
tokamak plasma. We focus on cases where the resonant surfaces are a small
distance apart. Recent numerical studies have shown that in such configurations
high-m modes are strongly unstable. In this paper, it is first demonstrated
that linear DTM theory predicts the dominance of high-m DTMs. A semi-empirical
formula for estimating the poloidal mode number of the fastest growing mode,
m_peak, is obtained from the existing linear theory. Second, using nonlinear
simulations, it is shown that the presence of fast growing high-m modes leads
to a rapid turbulent collapse in an annular region, whereby small magnetic
island structures form. Furthermore, consideration is given to the evolution of
low-m modes, in particular the global m=1 internal kink, which can undergo
nonlinear driving through coupling to fast growing linear high-m DTMs. Factors
influencing the details of the dynamics are discussed. These results may be
relevant for the understanding of the magnetohydrodynamic (MHD) activity near
the minimum of q and may thus be of interest to studies concerned with
stability and confinement in advanced tokamaks.Comment: 11 pages, 10 figure
Tomography of (2, 1) and (3, 2) magnetic island structures on Tokamak Fusion Test Reactor
High-resolution electron cyclotron emission (ECE) image reconstruction has been used to observe (m,n)=(2,1) and (3, 2) island structures on Tokamak Fusion Test Reactor [Plasma Phys. Controlled. Fusion 33, 1509 (1991)], where m and n are the poloidal and the toroidal mode number, respectively. The observed island structure is compared with other diagnostics, such as soft x-ray tomography and magnetic measurements. A cold elliptic island is observed after lithium pellet injection. Evidence for the enhancement of the heat transfer due to the island is observed. A relaxation phenomenon due to the m=2 mode is newly observed in Ohmic plasmas
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Runaway electrons with strongly anisotropic distributions present in
post-disruption tokamak plasmas can destabilize the extraordinary electron
(EXEL) wave. The present work investigates the dynamics of the quasi-linear
evolution of the EXEL instability for a range of different plasma parameters
using a model runaway distribution function valid for highly relativistic
runaway electron beams produced primarily by the avalanche process. Simulations
show a rapid pitch-angle scattering of the runaway electrons in the high energy
tail on the time scale. Due to the wave-particle
interaction, a modification to the synchrotron radiation spectrum emitted by
the runaway electron population is foreseen, exposing a possible experimental
detection method for such an interaction
Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes
Self-consistent transport simulation of ITER scenarios is a very important
tool for the exploration of the operational space and for scenario
optimisation. It also provides an assessment of the compatibility of developed
scenarios (which include fast transient events) with machine constraints, in
particular with the poloidal field (PF) coil system, heating and current drive
(H&CD), fuelling and particle and energy exhaust systems. This paper discusses
results of predictive modelling of all reference ITER scenarios and variants
using two suite of linked transport and equilibrium codes. The first suite
consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary
equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the
inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H,
D and He (including ITER scenarios with reduced current and toroidal field).
The second suite of codes was used mainly for the modelling of hybrid and
steady state ITER scenarios. It combines the 1.5D core transport code CRONOS
[4] and the free boundary equilibrium evolution code DINA-CH [5].Comment: 23 pages, 18 figure
Effect of toroidal field ripple on plasma rotation in JET
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect
Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER
Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n = 1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n > 4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n = 1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n = 1 field errors will not cause substantial flow damping for the 15 MA baseline scenario
Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints
Fusion performance in tokamaks hinges critically on the efficacy of the Edge
Transport Barrier (ETB) at suppressing energy losses. The new concept of
fingerprints is introduced to identify the instabilities that cause the
transport losses in the ETB of many of today's experiments, from widely posited
candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic
simulations of experiments, find that each mode type produces characteristic
ratios of transport in the various channels: density, heat and impurities.
This, together with experimental observations of transport in some channel, or,
of the relative size of the driving sources of channels, can identify or
determine the dominant modes causing energy transport. In multiple ELMy H-mode
cases that are examined, these fingerprints indicate that MHD-like modes are
apparently not the dominant agent of energy transport; rather, this role is
played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG)
modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped
Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron
particle losses. Fluctuation frequency can also be an important means of
identification, and is often closely related to the transport fingerprint. The
analytical arguments unify and explain previously disparate experimental
observations on multiple devices, including DIII-D, JET and ASDEX-U, and
detailed simulations of two DIII-D ETBs also demonstrate and corroborate this
Recommended from our members
Properties of Electricity Prices and the Drivers of Interconnector Revenue
This paper examines the drivers behind revenues of merchant electricity interconnectors and the effect of arbitrage trading over interconnectors on the level and volatility of electricity prices in the connected markets. It sets out a simulation methodology that allows the stochastic and deterministic properties of prices, as well as most model parameters, to be varied freely. The effect of electricity flows over interconnectors on prices and thus on interconnector revenues is modelled explicitly by a mathematical algorithm. It is found that arbitrage can reduce the volatility and to some extent the mean of electricity prices in both markets when two markets with a similar distribution of prices are connected. It is also found that it is possible for interconnectors to generate considerable revenues without any consistent price differences between the connected markets. This shows that interconnectors between seemingly very similar electricity markets can be an attractive proposition for a profit-seeking investor
- …
