4 research outputs found

    パラノイド傾向が怒りに及ぼす影響について / パラノイド傾向者はどのように怒りを感じているのか

    Get PDF
    パラノイド傾向とは被害者意識を強く感じる傾向が強いということであり、先行研究で、はパラノイド傾向のあるものは他者に攻撃的に見られやすいとしている。そこで本研究では、パラノイド傾向者がどのように悪意を認知し、怒りを喚起させているのか、そしてその表出方法を明らかにすることを目的として研究を行った。その結果、パラノイド傾向者は最近あった怒り場面を思い出させた場合、その時の怒りの程度に大きな差は見られなかったが、怒りの表出方法に関して理性的な説得を行う一方で直接非言語的攻撃を行うことが示された。また場面想定法による怒り反応の検討の結果、出来事や悪意の帰属、被害者,意識に違いが見られ、パラノイド得点が高いほど、自分が加害者の場面で怒りを喚起しやすく、自分が被害者だと捉える傾向があった。そして高パラノイド傾向者は、相手の反応を悪怠に捉えやすく、出来事の理由を不当なものと感じやすいことが示された

    Reality and Terror, the First-Person Shooter in Current Day Settings

    No full text

    Botnet detection techniques: review, future trends, and issues

    No full text
    NoIn recent years, the Internet has enabled access to widespread remote services in the distributed computing environment; however, integrity of data transmission in the distributed computing platform is hindered by a number of security issues. For instance, the botnet phenomenon is a prominent threat to Internet security, including the threat of malicious codes. The botnet phenomenon supports a wide range of criminal activities, including distributed denial of service (DDoS) attacks, click fraud, phishing, malware distribution, spam emails, and building machines for illegitimate exchange of information/materials. Therefore, it is imperative to design and develop a robust mechanism for improving the botnet detection, analysis, and removal process. Currently, botnet detection techniques have been reviewed in different ways; however, such studies are limited in scope and lack discussions on the latest botnet detection techniques. This paper presents a comprehensive review of the latest state-of-the-art techniques for botnet detection and figures out the trends of previous and current research. It provides a thematic taxonomy for the classification of botnet detection techniques and highlights the implications and critical aspects by qualitatively analyzing such techniques. Related to our comprehensive review, we highlight future directions for improving the schemes that broadly span the entire botnet detection research field and identify the persistent and prominent research challenges that remain open.University of Malaya, Malaysia (No. FP034-2012A
    corecore