70 research outputs found

    Unquenched quark propagator in Landau gauge

    Get PDF
    We present an unquenched calculation of the quark propagator in Landau gauge with 2+1 flavors of dynamical quarks. We use configurations generated with an improved staggered (``Asqtad'') action by the MILC collaboration. This quark action has been seen to have excellent rotational symmetry and scaling properties in the quenched quark propagator. Quenched and dynamical calculations are performed on a 203×6420^3\times 64 lattice with a nominal lattice spacing of a=0.125a = 0.125 fm. The matched quenched and dynamical lattices allow us to investigate the relatively subtle sea quark effects, and even in the quenched case the physical volume of these lattices gives access to lower momenta than our previous study. We calculate the quark mass function and renormalization function for a variety of valence and sea quark masses.Comment: 7 pages, 6 figure

    Scaling behavior of quark propagator in full QCD

    Get PDF
    We study the scaling behavior of the quark propagator on two lattices with similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in order to test whether we are close to the continuum limit for these lattices. We use configurations generated with an improved staggered (``Asqtad'') action by the MILC collaboration. The calculations are performed on 283×9628^3\times 96 lattices with lattice spacing a=0.09a = 0.09 fm and on 203×6420^3\times 64 lattices with lattice spacing a=0.12a = 0.12 fm. We calculate the quark mass function, M(q2)M(q^2), and the wave-function renormalization function, Z(q2)Z(q^2), for a variety of bare quark masses. Comparing the behavior of these functions on the two sets of lattices we find that both Z(q2)Z(q^2) and M(q2)M(q^2) show little sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure

    From Euclidean to Minkowski space with the Cauchy-Riemann equations

    Get PDF
    We present an elementary method to obtain Green's functions in non-perturbative quantum field theory in Minkowski space from calculated Green's functions in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes is many times unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore we suggest to use the Cauchy-Riemann equations, that perform the analytical continuation without assuming global information on the function in the entire complex plane, only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge Quantum Chromodynamics, that is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations to high-frequency noise, that makes difficult to achieve good accuracy. We also point out a few curiosities related to the Wick rotation.Comment: 12 pages in EPJ double-column format, 16 figures. This version: added paragraph, two reference

    Scaling behavior and positivity violation of the gluon propagator in full QCD

    Get PDF
    The Landau-gauge gluon propagator is studied using the coarse and fine dynamical MILC configurations. The effects of dynamical quarks are clearly visible and lead to a reduction of the nonperturbative infrared enhancement relative to the quenched case. Lattice spacing effects are studied and found to be small. The gluon spectral function is shown to clearly violate positivity in both quenched and full QCD.Comment: 7 pages, 9 figures. References and 1 figure added, minor text modifications, version to be published in PR

    Using LEGO race cars in the Physics lab

    Get PDF
    Students often find learning about uncertainties dry and boring. In order to engage students and simulate their interest, I have been using LEGO race cars to teach measurement more fun while allowing them to quickly repeat their experiments. Students can then perform uncertainty propagation calculations. My research found that these hands-on LEGO activities were instrumental in improving students’ confidence with physics experiments, especially in dealing with uncertainties.  LEGO lab was also a key factor in reducing the early attrition rate at the first-year level. The Experimental Activities that I have designed cover a range of topics, including the concept of uncertainty, the number of variables in an experiment, and the fairness of an experiment (i.e., whether the experiment, as designed, biased the result). In each of the experimental tasks fundamental concepts are introduced, including the various formulae for speed, velocity and acceleration, potential and kinetic energy, as well as the calculation of the track angles. Further, uncertainty analysis is introduced and explained for each experiment, with the students being required to identify the sources of the uncertainty (and if it can be determined, the magnitude) and for the quantifiable sources, and then propagate that uncertainty into the final result. For each experiment, the students are asked to discuss the limitations and drawbacks of the experiment and suggest improvements. In this workshop, I will discuss some LEGO experimental activities that can be used in lab classes, helping students comprehend the quite abstract concept of uncertainty. These activities can be modified and used to teach school students about energy conservation, sources of energy, different types of energy etc. Intended Audience: Undergraduate and Secondary-School Physics Educator

    Pion radiative weak decays in nonlocal chiral quark models

    Get PDF
    We analyze the radiative pion decay pi+ -> e+ nu_e gamma within nonlocal chiral quark models that include wave function renormalization. In this framework we calculate the vector and axial-vector form factors FV and FA at q^2=0 --where q^2 is the (e+ \nu_e) squared invariant mass-- and the slope a of FV(q^2) at q^2 -> 0. The calculations are carried out considering different nonlocal form factors, in particular those taken from lattice QCD evaluations, showing a reasonable agreement with the corresponding experimental data. The comparison of our results with those obtained in the (local) NJL model and the relation of FV and a with the form factor in pi^0 -> gamma* gamma decays are discussed.Comment: 14 pages, 1 figure, minor changes in text introduce

    Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region

    Full text link
    We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.Comment: 20 pages, no figures. Preprint number added in v2

    Phase diagrams in nonlocal PNJL models constrained by Lattice QCD results

    Full text link
    Based on lattice QCD-adjusted SU(2) nonlocal Polyakov--Nambu--Jona-Lasinio (PNJL) models, we investigate how the location of the critical endpoint in the QCD phase diagram depends on the strenght of the vector meson coupling, as well as the Polyakov-loop (PL) potential and the form factors of the covariant model. The latter are constrained by lattice QCD data for the quark propagator. The strength of the vector coupling is adjusted such as to reproduce the slope of the pseudocritical temperature for the chiral phase transition at low chemical potential extracted recently from lattice QCD simulations. Our study supports the existence of a critical endpoint in the QCD phase diagram albeit the constraint for the vector coupling shifts its location to lower temperatures and higher baryochemical potentials than in the case without it.Comment: 23 pages, 10 figures. Version accepted in Phys. Part. Nucl. Lett. (to appear), references adde

    Effectiveness of enrichment programs in cultivating STEM interest in year nine female students

    Get PDF
    BACKGROUND: With women underrepresented in STEM disciplines, due to the perception that STEM careers are challenging (Kier et al, 2013), there is a focus on encouraging females to pursue STEM (Marginson et al, 2013). Research suggests that enrichment programs enhance interest in gaining a STEM career (Merolla & Serpe, 2013), however knowledge on the most effective enrichment method is limited. AIMS: The aim of this project is to investigate the effectiveness of two enrichment methods on female year nine students’ interest in STEM. METHOD: The project involves two enrichment programs run through Flinders University; Real Science Enrichment Days and Design & Technology Enrichment Series. The effectiveness of enrichment on student attitudes towards STEM was evaluated by experiment using modified validated pre- and post- surveys (Tyler-Wood et al, 2010). RESULTS: Findings show that both enrichment methods take the negativity out of students, who found Science less challenging after either enrichment. After the Enrichment Series, there was a decrease in the percentage of students who found Science boring. We seek to present the usefulness of such programs and the measurable outcomes achieved so far. CONCLUSIONS: These findings will be beneficial in designing more efficient enrichment programs to inspire girls about STEM careers

    Modern compact star observations and the quark matter equation of state

    Full text link
    We present a hybrid equation of state (EoS) for dense matter that satisfies phenomenological constraints from modern compact star (CS) observations which indicate high maximum masses (M = 2 M_sun) and large radii (R> 12 km). The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy-ion collisions and a deconfinement transition at approx. 0.55 fm^{-3}. The quark matter phase is described by a 3-flavor Nambu--Jona-Lasinio model that accounts for scalar diquark condensation and vector meson interactions while the nuclear matter phase is obtained within the Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-A potential. We demonstrate that both pure neutron stars and neutron stars with quark matter cores (QCSs) are consistent with modern CS observations. Hybrid star configurations with a CFL quark core are unstable.Comment: 16 pages, 4 figures; published version, important note added in proo
    corecore