12,120 research outputs found
INTEGRAL observation of hard X-ray variability of the TeV binary LS5039 / RX J1826.2-1450
LS 5039/RX J1826.2-1450 is one of the few High Mass X-ray binary systems from
which radio and high energy TeV emission has been observed. Moreover,
variability of the TeV emission with orbital period was detected.
We investigate the hard X-ray (25 - 200keV) spectral and timing properties of
the source with the monitoring IBIS/ISGRI instrument on-board the INTEGRAL
satellite.
We present the analysis of INTEGRAL observations for a total of about 3 Msec
exposure time, including both public data and data from the Key Programme. We
search for flux and spectral variability related to the orbital phase.
The source is observed to emit from 25 up to 200 keV and the emission is
concentrated around inferior conjunction. Orbital variability in the hard X-ray
band is detected and established to be in phase with the orbitally modulated
TeV emission observed with H.E.S.S. For this energy range we determine an
average flux for the inferior conjunction phase interval of erg cm s, and a flux upper limit for the
superior conjunction phase interval of erg cm
s (90% conf. level respectively). The spectrum for the inferior
conjunction phase interval follows a power law with an index (90% conf. level).Comment: 4 pages, 4 figures, accepted by A&
Long Term X-ray Monitoring Of The TeV Binary LS I +61 303 with RXTE
We report on the results of a long term X-ray monitoring campaign of the
galactic binary LS I +61 303 performed by the Rossi X-ray Timing Explorer. This
dataset consists of 1 ks pointings taken every other day between 2007 August 28
until 2008 February 2. The observations covered six full cycles of the 26.496
day binary period and constitute the largest continuous X-ray monitoring
dataset on LS I +61 303 to date with this sensitivity. There is no
statistically strong detection of modulation of flux or photon index with
orbital phase; however, we do find a strong correlation between flux and photon
index, with the spectrum becoming harder at higher fluxes. The dataset contains
three large flaring episodes, the largest of these reaching a flux level of 7.2
(+0.1,-0.2)*10^-11 erg cm^-2 s^-1 in the 3-10 keV band, which is a factor of
three times larger than flux levels typically seen in the system. Analysis of
these flares shows the X-ray emission from LS I +61 303 changing by up to a
factor of six over timescales of several hundred seconds as well as doubling
times as fast as 2 seconds. This is the fastest variability ever observed from
LS I +61 303 at this wavelength and places constraints on the size of the X-ray
emitting region.Comment: 24 pages, 7 figures, 2 tables. Accepted for publication in Ap
Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds
We present measurements of the mean dense core lifetimes in numerical
simulations of magnetically supercritical, turbulent, isothermal molecular
clouds, in order to compare with observational determinations. "Prestellar"
lifetimes (given as a function of the mean density within the cores, which in
turn is determined by the density threshold n_thr used to define them) are
consistent with observationally reported values, ranging from a few to several
free-fall times. We also present estimates of the fraction of cores in the
"prestellar", "stellar'', and "failed" (those cores that redisperse back into
the environment) stages as a function of n_thr. The number ratios are measured
indirectly in the simulations due to their resolution limitations. Our approach
contains one free parameter, the lifetime of a protostellar object t_yso (Class
0 + Class I stages), which is outside the realm of the simulations. Assuming a
value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores
ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3,
again in good agreement with observational determinations. We also find that
the mass in the failed cores is comparable to that in stellar cores at n_thr =
1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in
agreement with recent observational suggestions that at the latter densities
the cores are in general gravitationally dominated. We conclude by noting that
the timescale for core contraction and collapse is virtually the same in the
subcritical, ambipolar diffusion-mediated model of star formation, in the model
of star formation in turbulent supercritical clouds, and in a model
intermediate between the previous two, for currently accepted values of the
clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at
http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm
H-alpha Emission Variability in the gamma-ray Binary LS I +61 303
LS I +61 303 is an exceptionally rare example of a high mass X-ray binary
(HMXB) that also exhibits MeV-TeV emission, making it one of only a handful of
"gamma-ray binaries". Here we present H-alpha spectra that show strong
variability during the 26.5 day orbital period and over decadal time scales. We
detect evidence of a spiral density wave in the Be circumstellar disk over part
of the orbit. The H-alpha line profile also exhibits a dramatic emission burst
shortly before apastron, observed as a redshifted shoulder in the line profile,
as the compact source moves almost directly away from the observer. We
investigate several possible origins for this red shoulder, including an
accretion disk, mass transfer stream, and a compact pulsar wind nebula that
forms via a shock between the Be star's wind and the relativistic pulsar wind.Comment: Accepted to Ap
Gravitational microlensing of gamma-ray blazars
We present a detailed study of the effects of gravitational microlensing on
compact and distant -ray blazars. These objects have -ray
emitting regions which are small enough as to be affected by microlensing
effects produced by stars lying in intermediate galaxies. We analyze the
temporal evolution of the gamma-ray magnification for sources moving in a
caustic pattern field, where the combined effects of thousands of stars are
taken into account using a numerical technique. We propose that some of the
unidentified -ray sources (particularly some of those lying at high
galactic latitude whose gamma-ray statistical properties are very similar to
detected -ray blazars) are indeed the result of gravitational lensing
magnification of background undetected Active Galactic Nuclei (AGNs).Comment: 30 pages, 27 figures. Four figures are being submitted only as .gif
files, and should be printed separately. The abstract below has been
shortened from the actual version appearing in the pape
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
Scanning the critical fluctuations -- application to the phenomenology of the two-dimensional XY-model --
We show how applying field conjugated to the order parameter, may act as a
very precise probe to explore the probability distribution function of the
order parameter. Using this `magnetic-field scanning' on large-scale numerical
simulations of the critical 2D XY-model, we are able to discard the conjectured
double-exponential form of the large-magnetization asymptote.Comment: 4 pages, 4 figure
Constraining supersymmetry from the satellite experiments
In this paper we study the detectability of -rays from dark matter
annihilation in the subhalos of the Milky Way by the satellite-based
experiments, EGRET and GLAST. We work in the frame of supersymmetric extension
of the standard model and assume the lightest neutralino being the dark matter
particles. Based on the N-body simulation of the evolution of dark matter
subhalos we first calculate the average intensity distribution of this new
class of -ray sources by neutralino annihilation. It is possible to
detect these -ray sources by EGRET and GLAST. Conversely, if these
sources are not detected the nature of the dark matter particls will be
constrained by these experiments, which, however, depending on the
uncertainties of the subhalo profile.Comment: 19 pages, 5 gigures; references added, more discussions adde
- …
