10,414 research outputs found
Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models
Machine learning techniques typically rely on large datasets to create
accurate classifiers. However, there are situations when data is scarce and
expensive to acquire. This is the case of studies that rely on state-of-the-art
computational models which typically take days to run, thus hindering the
potential of machine learning tools. In this work, we present a novel
classifier that takes advantage of lower fidelity models and inexpensive
approximations to predict the binary output of expensive computer simulations.
We postulate an autoregressive model between the different levels of fidelity
with Gaussian process priors. We adopt a fully Bayesian treatment for the
hyper-parameters and use Markov Chain Mont Carlo samplers. We take advantage of
the probabilistic nature of the classifier to implement active learning
strategies. We also introduce a sparse approximation to enhance the ability of
themulti-fidelity classifier to handle large datasets. We test these
multi-fidelity classifiers against their single-fidelity counterpart with
synthetic data, showing a median computational cost reduction of 23% for a
target accuracy of 90%. In an application to cardiac electrophysiology, the
multi-fidelity classifier achieves an F1 score, the harmonic mean of precision
and recall, of 99.6% compared to 74.1% of a single-fidelity classifier when
both are trained with 50 samples. In general, our results show that the
multi-fidelity classifiers outperform their single-fidelity counterpart in
terms of accuracy in all cases. We envision that this new tool will enable
researchers to study classification problems that would otherwise be
prohibitively expensive. Source code is available at
https://github.com/fsahli/MFclass
Nonlocal compensation of pure phase objects with entangled photons
We suggest and demonstrate a scheme for coherent nonlocal compensation of
pure phase objects based on two-photon polarization and momentum entangled
states. The insertion of a single phase object on one of the beams reduces the
purity of the state and the amount of shared entanglement, whereas the original
entanglement can be retrieved by adding a suitable phase object on the other
beam. In our setup polarization and momentum entangled states are generated by
spontaneous parametric downconversion and then purified using a programmable
spatial light modulator, which may be also used to impose arbitrary space
dependent phase functions to the beams. As a possible application, we suggest
and demonstrate a quantum key distribution protocol based on nonlocal phase
compensation.Comment: 7 pages, 5 figure
Marginal states of the resistive tearing mode with flow in cylindrical geometry
The linear stability of tearing modes in a cylindrical plasma subject to a sub-Alfvénic equilibrium shear flow along the equilibrium magnetic field is considered. The equations in the resistive boundary layer at the rational surface are solved numerically using a Fourier transform combined with a finite-element approach. The behaviour of the growth rate as a function of the flow and the various parameters (including a perpendicular fluid viscosity) is obtained. Marginal stability curves showing the dependence of the familiar matching parameter Δ' with flow and shear are also given
Phase transitions related to the pigeonhole principle
Since Paris introduced them in the late seventies (Paris1978), densities turned out to be useful for studying independence results. Motivated by their simplicity and surprising strength we investigate the combinatorial complexity of two such densities which are strongly related to the pigeonhole principle. The aim is to miniaturise Ramsey's Theorem for -tuples. The first principle uses an unlimited amount of colours, whereas the second has a fixed number of two colours. We show that these principles give rise to Ackermannian growth. After parameterising these statements with respect to a function f:N->N, we investigate for which functions f Ackermannian growth is still preserved
Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios
We report the discovery of 11 very faint (r< 23), low surface brightness
({\mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo
cluster, obtained by the prime focus cameras (LBC) at the Large Binocular
Telescope (LBT). These extend our previous sample to reach a total number of 27
galaxies in a field of just of 0.17 deg^2 located at a median distance of 390
kpc from the cluster center. Their association with the Virgo cluster is
supported by their separate position in the central surface brightness - total
magnitude plane with respect to the background galaxies of similar total
magnitude. For a significant fraction (26\%) of the sample the association to
the cluster is confirmed by spectroscopic follow-up. We show that the mere
abundance of satellite galaxies corresponding to our observed number in the
target field provides extremely tight constraints on Dark Matter models with
suppressed power spectrum compared to the Cold Dark Matter case, independently
of the galaxy luminosity distribution. In particular, requiring the observed
number of satellite galaxies not to exceed the predicted abundance of Dark
Matter sub-halos yields a limit m_X >3 keV at 1-{\sigma} and m_X > 2.3 keV at
2-{\sigma} confidence level for the mass of thermal Warm Dark Matter particles.
Such a limit is competitive with other limits set by the abundance of
ultra-faint satellite galaxies in the Milky Way, is completely independent of
baryon physics involved in galaxy formation, and has the potentiality for
appreciable improvements with next observations. We extend our analysis to Dark
Matter models based on sterile neutrinos, showing that our observations set
tight constraints on the combination of sterile neutrino mass m_{\nu} and
mixing parameter sin^2(2{\theta}). We discuss the robustness of our results
with respect to systematics.Comment: Accepted for publication in Astronomy & Astrophysic
On the reconstruction of diagonal elements of density matrix of quantum optical states by on/off detectors
We discuss a scheme for reconstructing experimentally the diagonal elements
of the density matrix of quantum optical states. Applications to PDC heralded
photons, multi-thermal and attenuated coherent states are illustrated and
discussed in some details.Comment: 10 pages, presented at Palermo "TQMFA2005" Conference. To appear on
"Open Systems & Information Dynamics" (2006
Neutrino energy transport in weak decoupling and big bang nucleosynthesis
We calculate the evolution of the early universe through the epochs of weak
decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by
simultaneously coupling a full strong, electromagnetic, and weak nuclear
reaction network with a multi-energy group Boltzmann neutrino energy transport
scheme. The modular structure of our code provides the ability to dissect the
relative contributions of each process responsible for evolving the dynamics of
the early universe in the absence of neutrino flavor oscillations. Such an
approach allows a detailed accounting of the evolution of the ,
, , , , energy
distribution functions alongside and self-consistently with the nuclear
reactions and entropy/heat generation and flow between the neutrino and
photon/electron/positron/baryon plasma components. This calculation reveals
nonlinear feedback in the time evolution of neutrino distribution functions and
plasma thermodynamic conditions (e.g., electron-positron pair densities), with
implications for: the phasing between scale factor and plasma temperature; the
neutron-to-proton ratio; light-element abundance histories; and the
cosmological parameter \neff. We find that our approach of following the time
development of neutrino spectral distortions and concomitant entropy production
and extraction from the plasma results in changes in the computed value of the
BBN deuterium yield. For example, for particular implementations of quantum
corrections in plasma thermodynamics, our calculations show a increase
in deuterium. These changes are potentially significant in the context of
anticipated improvements in observational and nuclear physics uncertainties.Comment: 37 pages, 12 Figures, 6 Table
Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs
We show that a self-consistent and coupled treatment of the weak decoupling,
big bang nucleosynthesis, and photon decoupling epochs can be used to provide
new insights and constraints on neutrino sector physics from high-precision
measurements of light element abundances and cosmic microwave background
observables. Implications of beyond-standard-model physics in cosmology,
especially within the neutrino sector, are assessed by comparing predictions
against five observables: the baryon energy density, helium abundance,
deuterium abundance, effective number of neutrinos, and sum of the light
neutrino mass eigenstates. We give examples for constraints on dark radiation,
neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile
neutrinos.Comment: 29 pages, 10 figure
Non-classical correlations in non-Markovian continuous variable systems
We consider two identical and non-interacting harmonic oscillators coupled to
either two independent bosonic baths or to a common bosonic bath. Under the
only assumption of weak coupling, we analyze in details the non-Markovian short
time-scale evolution of intensity correlations, entanglement and quantum
discord for initial two-mode squeezed-thermal vacuum states. In the independent
reservoirs case we observe the detrimental effect of the environment for all
these quantities and we establish a hierarchy for their robustness against the
environmental noise. In the common reservoir case, for initial uncorrelated
states, we find that only quantum discord can be created via interaction with
the bath, while entanglement and sub shot noise intensity correlations remain
absent.Comment: 10 pages, 5 figure
- …
