150,714 research outputs found
Power Spectrum of Cosmic Momentum Field Measured from the SFI Galaxy Sample
We have measured the cosmic momentum power spectrum from the peculiar
velocities of galaxies in the SFI sample. The SFI catalog contains field spiral
galaxies with radial peculiar velocities derived from the I-band Tully-Fisher
relation. As a natural measure of the large-scale peculiar velocity field, we
use the cosmic momentum field that is defined as the peculiar velocity field
weighted by local number of galaxies. We have shown that the momentum power
spectrum can be derived from the density power spectrum for the constant linear
biasing of galaxy formation, which makes it possible to estimate \beta_S =
\Omega_m^{0.6} / b_S parameter precisely where \Omega_m is the matter density
parameter and b_S is the bias factor for optical spiral galaxies. At each
wavenumber k we estimate \beta_S(k) as the ratio of the measured to the derived
momentum power over a wide range of scales (0.026 h^{-1}Mpc <~ k <~ 0.157
h^{-1}Mpc) that spans the linear to the quasi-linear regimes. The estimated
\beta_S(k)'s have stable values around 0.5, which demonstrates the constancy of
\beta_S parameter at scales down to 40 h^{-1}Mpc. We have obtained
\beta_S=0.49_{-0.05}^{+0.08} or \Omega_m = 0.30_{-0.05}^{+0.09} b_S^{5/3}, and
the amplitude of mass fluctuation as
\sigma_8\Omega_m^{0.6}=0.56_{-0.21}^{+0.27}. The 68% confidence limits include
the cosmic variance. We have also estimated the mass density power spectrum.
For example, at k=0.1047 h Mpc^{-1} (\lambda=60 h^{-1}Mpc) we measure
\Omega_m^{1.2} P_{\delta}(k)=(2.51_{-0.94}^{+0.91})\times 10^3 (h^{-1}Mpc)^3,
which is lower compared to the high-amplitude power spectra found from the
previous maximum likelihood analyses of peculiar velocity samples like Mark
III, SFI, and ENEAR.Comment: 12 pages, 9 figures, accepted for publication in Ap
Intra pseudogap- and superconductivity-pair spin and charge fluctuations and underdome metal-insulator (fermion-boson)-crossover phenomena as keystones of cuprate physics
The most intriguing observation of cuprate experiments is most likely the
metal-insulator-crossover (MIC), seen in the underdome region of the
temperature-doping phase diagram of copper-oxides under a strong magnetic
field, when the superconductivity is suppressed. This MIC, which results in
such phenomena as heat conductivity downturn, anomalous Lorentz ratio,
nonlinear entropy, insulating ground state, nematicity- and stripe-phases and
Fermi pockets, reveals the nonconventional dielectric property of the
pseudogap-normal phase. Since conventional superconductivity appears from a
conducting normal phase, the understanding of how superconductivity arises from
an insulating state becomes a fundamental problem and thus the keystone for all
of cuprate physics. Recently, in interpreting the physics of visualization in
scanning tunneling microscopy (STM) real space nanoregions (NRs), which exhibit
an energy gap, we have succeeded in understanding that the minimum size for
these NRs provides pseudogap and superconductivity pairs, which are single
bosons. In this work, we discuss the intra-particle magnetic spin and charge
fluctuations of these bosons, observed recently in hidden magnetic order and
STM experiments. We find that all the mentioned MIC phenomena can be obtained
in the Coulomb single boson and single fermion two liquid model, which we
recently developed, and the MIC is a crossover of sample percolating NRs of
single fermions into those of single bosons.Comment: 22 pages, 7 figures. arXiv admin note: text overlap with
arXiv:1010.043
Remarks on the Scalar Graviton Decoupling and Consistency of Horava Gravity
Recently Horava proposed a renormalizable gravity theory with higher
derivatives by abandoning the Lorenz invariance in UV. But there have been
confusions regarding the extra scalar graviton mode and the consistency of the
Horava model. I reconsider these problems and show that, in the Minkowski
vacuum background, the scalar graviton mode can be consistency decoupled from
the usual tensor graviton modes by imposing the (local) Hamiltonian as well as
the momentum constraints.Comment: Some clarifications regarding the projectable case added, Typos
corrected, Comments (Footnote No.9, Note Added) added, References updated,
Accepted in CQ
An augmented moment method for stochastic ensembles with delayed couplings: II. FitzHugh-Nagumo model
Dynamics of FitzHugh-Nagumo (FN) neuron ensembles with time-delayed couplings
subject to white noises, has been studied by using both direct simulations and
a semi-analytical augmented moment method (AMM) which has been proposed in a
recent paper [H. Hasegawa, E-print: cond-mat/0311021]. For -unit FN neuron
ensembles, AMM transforms original -dimensional {\it stochastic} delay
differential equations (SDDEs) to infinite-dimensional {\it deterministic} DEs
for means and correlation functions of local and global variables.
Infinite-order recursive DEs are terminated at the finite level in the
level- AMM (AMM), yielding -dimensional deterministic DEs. When a
single spike is applied, the oscillation may be induced if parameters of
coupling strength, delay, noise intensity and/or ensemble size are appropriate.
Effects of these parameters on the emergence of the oscillation and on the
synchronization in FN neuron ensembles have been studied. The synchronization
shows the {\it fluctuation-induced} enhancement at the transition between
non-oscillating and oscillating states. Results calculated by AMM5 are in
fairly good agreement with those obtained by direct simulations.Comment: 15 pages, 3 figures; changed the title with correcting typos,
accepted in Phys. Rev. E with some change
Low-amplitude and long-period radial velocity variations in giants HD 3574, 63 Cygni, and HD 216946 (Research Note)
Aims. We study the low-amplitude and long-period variations in evolved stars
using precise radial velocity measurements. Methods. The high-resolution,
fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used from
September 2004 to May 2014 as part of the exoplanet search program at the
Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the
detection of low-amplitude and long-period orbital radial velocity variations
in three evolved stars, HD 3574, 63 Cyg, and HD 216946. They have periods of
1061, 982, and 1382 days and semi-amplitudes of 376, 742, and 699 m/s,
respectively.Comment: 6 pages, 7 figures, 4 tables, accepted for publisation in Astronomy &
Astrophysic
Formation and Evolution of Single Molecule Junctions
We analyze the formation and evolution statistics of single molecule
junctions bonded to gold electrodes using amine, methyl sulfide and dimethyl
phosphine link groups by measuring conductance as a function of junction
elongation. For each link, maximum elongation and formation probability
increase with molecular length, strongly suggesting that processes other than
just metal-molecule bond breakage play a key role in junction evolution under
stress. Density functional theory calculations of adiabatic trajectories show
sequences of atomic-scale changes in junction structure, including shifts in
attachment point, that account for the long conductance plateau lengths
observed.Comment: 10 pages, 4 figures, submitte
Aspects of Horava-Lifshitz cosmology
We review some general aspects of Horava-Lifshitz cosmology. Formulating it
in its basic version, we extract the cosmological equations and we use
observational data in order to constrain the parameters of the theory. Through
a phase-space analysis we extract the late-time stable solutions, and we show
that eternal expansion, and bouncing and cyclic behavior can arise naturally.
Concerning the effective dark energy sector we show that it can describe the
phantom phase without the use of a phantom field. However, performing a
detailed perturbation analysis, we see that Horava-Lifshitz gravity in its
basic version suffers from instabilities. Therefore, suitable generalizations
are required in order for this novel theory to be a candidate for the
description of nature.Comment: 10 pages, 4 figures, invited talk given at the 2nd International
Workshop on Dark Matter, Dark Energy and Matter-Antimatter Assymetry,
National Tsing Hua University, Hsinchu, Taiwan, November 5-6, 201
- …
