8,749 research outputs found
Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using beta-gamma coincidences
We present a nuclear medical imaging technique, employing triple-gamma
trajectory intersections from beta^+ - gamma coincidences, able to reach
sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of
reconstructed intersections per voxel compared to a conventional PET
reconstruction analysis. This '-PET' technique draws on specific beta^+
- decaying isotopes, simultaneously emitting an additional photon. Exploiting
the triple coincidence between the positron annihilation and the third photon,
it is possible to separate the reconstructed 'true' events from background. In
order to characterize this technique, Monte-Carlo simulations and image
reconstructions have been performed. The achievable spatial resolution has been
found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a
22Na point source. Only 40 intersections are sufficient for a reliable
sub-millimeter image reconstruction of a point source embedded in a scattering
volume of water inside a voxel volume of about 1 mm^3 ('high-resolution mode').
Moreover, starting with an injected activity of 400 MBq for ^76Br, the same
number of only about 40 reconstructed intersections are needed in case of a
larger voxel volume of 2 x 2 x 3~mm^3 ('high-sensitivity mode'). Requiring such
a low number of reconstructed events significantly reduces the required
acquisition time for image reconstruction (in the above case to about 140 s)
and thus may open up the perspective for a quasi real-time imaging.Comment: 17 pages, 5 figutes, 3 table
Metabolism of ticagrelor in patients with acute coronary syndromes.
© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio
Second-Hand Stress: Neurobiological Evidence for a Human Alarm Pheromone
Alarm pheromones are airborne chemical signals, released by an individual into the environment, which transmit warning of danger to conspecifics via olfaction. Using fMRI, we provide the first neurobiological evidence for a human alarm pheromone. Individuals showed activation of the amygdala in response to sweat produced by others during emotional stress, with exercise sweat as a control; behavioral data suggest facilitated evaluation of ambiguous threat
Molybdenum sputtering film characterization for high gradient accelerating structures
Technological advancements are strongly required to fulfill the demands of
new accelerator devices with the highest accelerating gradients and operation
reliability for the future colliders. To this purpose an extensive R&D
regarding molybdenum coatings on copper is in progress. In this contribution we
describe chemical composition, deposition quality and resistivity properties of
different molybdenum coatings obtained via sputtering. The deposited films are
thick metallic disorder layers with different resistivity values above and
below the molibdenum dioxide reference value. Chemical and electrical
properties of these sputtered coatings have been characterized by Rutherford
backscattering, XANES and photoemission spectroscopy. We will also present a
three cells standing wave section coated by a molybdenum layer 500 nm
thick designed to improve the performance of X-Band accelerating systems.Comment: manuscript has been submitted and accepted by Chinese Physics C
(2012
Evaluation of the surface strength of glass plates shaped by hot slumping process
The Hot Slumping Technology is under development by several research groups
in the world for the realization of grazing-incidence segmented mirrors for
X-ray astronomy, based on thin glass plates shaped over a mould at temperatures
above the transformation point. The performed thermal cycle and related
operations might have effects on the strength characteristics of the glass,
with consequences on the structural design of the elemental optical modules and
consecutively on the entire X-ray optic for large astronomical missions like
IXO and ATHENA. The mechanical strength of glass plates after they underwent
the slumping process was tested through destructive double-ring tests in the
context of a study performed by the Astronomical Observatory of Brera with the
collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire
study has been realized on more than 200 D263 Schott borosilicate glass
specimens of dimension 100 mm x 100 mm and thickness 0.4 mm, either flat or
bent at a Radius of Curvature of 1000 mm through the particular pressure
assisted hot slumping process developed by INAF-OAB. The collected experimental
data have been compared to non-linear FEM analyses and treated with Weibull
statistic to assess the current IXO glass X-ray telescope design, in terms of
survival probability, when subject to static and acoustic loads characteristic
of the launch phase. The paper describes the activities performed and presents
the obtained results.Comment: Accepted for publication in Optical Enginnering (Jun 26, 2014
ARTreat Project: Three-Dimensional Numerical Simulation of Plaque Formation and Development in the Arteries
Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in arteries. It is characterized by dysfunction of endothelium and vasculitis, and accumulation of lipid, cholesterol, and cell elements inside blood vessel wall. In this study, a continuum-based approach for plaque formation and development in 3-D is presented. The blood flow is simulated by the 3-D Navier-Stokes equations, together with the continuity equation while low-density lipoprotein (LDL) transport in lumen of the vessel is coupled with Kedem-Katchalsky equations. The inflammatory process was solved using three additional reaction-diffusion partial differential equations. Transport of labeled LDL was fitted with our experiment on the rabbit animal model. Matching with histological data for LDL localization was achieved. Also, 3-D model of the straight artery with initial mild constriction of 30% plaque for formation and development is presented
Flavor-Changing Processes in Extended Technicolor
We analyze constraints on a class of extended technicolor (ETC) models from
neutral flavor-changing processes induced by (dimension-six) four-fermion
operators. The ETC gauge group is taken to commute with the standard-model
gauge group. The models in the class are distinguished by how the left- and
right-handed components of the quarks and charged leptons transform
under the ETC group. We consider and other pseudoscalar
meson mixings, and conclude that they are adequately suppressed if the and
components of the relevant quarks are assigned to the same (fundamental or
conjugate-fundamental) representation of the ETC group. Models in which the
and components of the down-type quarks are assigned to relatively conjugate
representations, while they can lead to realistic CKM mixing and intra-family
mass splittings, do not adequately suppress these mixing processes. We identify
an approximate global symmetry that elucidates these behavioral differences and
can be used to analyze other possible representation assignments.
Flavor-changing decays, involving quarks and/or leptons, are adequately
suppressed for any ETC-representation assignment of the and components
of the quarks, as well as the leptons. We draw lessons for future ETC model
building.Comment: 25 page
Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities.
During its most recent outbreak across the Americas, Zika virus (ZIKV) was surprisingly shown to cause fetal loss and congenital malformations in acutely and chronically infected pregnant women. However, understanding the underlying pathogenesis of ZIKV congenital disease has been hampered by a lack of relevant in vivo experimental models. Here we present a candidate New World monkey model of ZIKV infection in pregnant marmosets that faithfully recapitulates human disease. ZIKV inoculation at the human-equivalent of early gestation caused an asymptomatic seroconversion, induction of type I/II interferon-associated genes and proinflammatory cytokines, and persistent viremia and viruria. Spontaneous pregnancy loss was observed 16-18 days post-infection, with extensive active placental viral replication and fetal neurocellular disorganization similar to that seen in humans. These findings underscore the key role of the placenta as a conduit for fetal infection, and demonstrate the utility of marmosets as a highly relevant model for studying congenital ZIKV disease and pregnancy loss
A Fast Tracking Algorithm for the ATLAS Level 2 Trigger
A set of conceptually simple and robust algorithms for fast pattern recognition and track reconstruction using 3D space points developed for the ATLAS Level 2 (LVL2) Trigger at the LHC is presented. Results on execution time and physics performance demonstrating the effectiveness of this approach in a demanding, online trigger environment are presented. Both this strategy and a complimentary lookup table based strategy provided results appearing in the recent ATLAS High-Level Trigger, Data Acquisition and Controls Technical Design Report and were successfully implemented online during data taking for the recent ATLAS combined test beam
- …
