318 research outputs found
Turbulence in Globally Coupled Maps
The phenomenon of turbulence is investigated in the context of globally
coupled maps. The local dynamics is given by the Chat\'e-Manneville minimal map
previously used in studies of spatiotemporal intermittency in locally coupled
map lattices. New features arise in the globally coupled system; for instance,
the transition to turbulence takes place discontinuously at some critical
values of the parameters of the system. The critical boundaries between
different regimes (laminar, turbulent and fully turbulent) of the system are
calculated on the parameter space. Windows of turbulence are present on some
ranges of the coupling parameter. The system also exhibits nontrivial
collective behavior. A map for the instantaneous fraction of turbulent elements
is proposed. This map describes many of the observed properties of the system.Comment: 6 pages LaTeX; 6 figures available upon request from authors. To
appear in Phys. Rev. E (1996
Information transfer and nontrivial collective behavior in chaotic coupled map networks
The emergence of nontrivial collective behavior in networks of coupled
chaotic maps is investigated by means of a nonlinear mutual prediction method.
The resulting prediction error is used to measure the amount of information
that a local unit possesses about the collective dynamics. Applications to
locally and globally coupled map systems are considered. The prediction error
exhibits phase transitions at critical values of the coupling for the onset of
ordered collective behavior in these networks. This information measure may be
used as an order parameter for the characterization of complex behavior in
extended chaotic systems.Comment: 4 pp.,4 figs., Accepted in Phys. Rev. E, Rapid Communications (2002
Hierarchical Model for the Evolution of Cloud Complexes
The structure of cloud complexes appears to be well described by a "tree
structure" representation when the image is partitioned into "clouds". In this
representation, the parent-child relationships are assigned according to
containment. Based on this picture, a hierarchical model for the evolution of
Cloud Complexes, including star formation, is constructed, that follows the
mass evolution of each sub-structure by computing its mass exchange
(evaporation or condensation) with its parent and children, which depends on
the radiation density at the interphase. For the set of parameters used as a
reference model, the system produces IMFs with a maximum at too high mass (~2
M_sun) and the characteristic times for evolution seem too long. We show that
these properties can be improved by adjusting model parameters. However, the
emphasis here is to illustrate some general properties of this nonlinear model
for the star formation process. Notwithstanding the simplifications involved,
the model reveals an essential feature that will likely remain if additional
physical processes are included. That is: the detailed behavior of the system
is very sensitive to variations on the initial and external conditions,
suggesting that a "universal" IMF is very unlikely. When an ensemble of IMFs
corresponding to a variety of initial or external conditions is examined, the
slope of the IMF at high masses shows variations comparable to the range
derived from observational data. (Abridged)Comment: Latex, 29 pages, 13 figures, accepted for publication in Ap
On the Thermal Instability in a Contracting Gas Cloud and Formation of a Bound Cluster
We perform linear analysis of thermal instability in a contracting large
cloud filled with warm HI gas and investigate the effect of metallicity and
radiation flux. When the cloud reaches critical density n_f, the cloud
fragments into cool, dense condensations because of thermal instability. For a
lower metallicity gas cloud, the value of n_f is high. Collision between
condensations will produce self-gravitating clumps and stars thereafter. From
the result of calculation, we suggest that high star formation efficiency and
bound cluster formation are realized in low-metallicity and/or strong-radiation
environments.Comment: 7 pages, including 7 figures, LaTeX2e(emulateapj5.sty) To appear in
ApJ, Jun 10, 200
Dynamics of Coupling Functions in Globally Coupled Maps: Size, Periodicity and Stability of Clusters
It is shown how different globally coupled map systems can be analyzed under
a common framework by focusing on the dynamics of their respective global
coupling functions. We investigate how the functional form of the coupling
determines the formation of clusters in a globally coupled map system and the
resulting periodicity of the global interaction. The allowed distributions of
elements among periodic clusters is also found to depend on the functional form
of the coupling. Through the analogy between globally coupled maps and a single
driven map, the clustering behavior of the former systems can be characterized.
By using this analogy, the dynamics of periodic clusters in systems displaying
a constant global coupling are predicted; and for a particular family of
coupling functions, it is shown that the stability condition of these clustered
states can straightforwardly be derived.Comment: 12 pp, 5 figs, to appear in PR
Interleukin-1beta tear concentration in glaucomatous and ocular hypertensive patients treated with preservative-free nonselective beta-blockers
PURPOSE: To evaluate the ocular surface inflammatory response to the presence of preservatives in nonselective
beta-blocker eyedrops.
DESIGN: Prospective, crossover, single-masked, randomized
clinical study. METHODS: STUDY POPULATION: Twenty primary open angle glaucoma or ocular hypertensive patients were divided in two groups, one treated with preservative-free timolol 0.5% (group 1) and the other with preserved timolol 0.5% (group 2) eyedrops. After 60 days of therapy and 3 more weeks of washout, the two groups switched to the other therapy. PROCEDURE: At each visit,basal tear samples were collected from the inferior conjunctival fornix for the determination of interleukin (IL)-1 tear concentrations by an enzyme-linked immunosorbent assay. Intraocular pressure measurement, conjunctival
hyperemia, superficial punctate keratitis, and tear film breakup time were evaluated. MAIN OUTCOME MEASURE: IL-1 concentration in tears following the use of preserved eyedrops.
RESULTS: IL-1 tear concentrations increased significantly in both groups, compared with baseline values,during preserved timolol therapy. There were no statistically significant changes in hyperemia and superficial punctate keratitis throughout the study in either group.A statistically significant breakup time reduction was observed in both groups after 30 days and after 60 days of preserved therapy.
CONCLUSION: The use of preservatives in timolol 0.5% eyedrops leads to tear film instability and ocular surface inflammatory changes documented by a reduction of breakup time and an increase of IL-1 tear concentrations.Preservative-free beta-blockers are preferable for long-term hypotensive therapy to prevent ocular surface inflammation
Emergence of patterns in driven and in autonomous spatiotemporal systems
The relationship between a driven extended system and an autonomous
spatiotemporal system is investigated in the context of coupled map lattice
models. Specifically, a locally coupled map lattice subjected to an external
drive is compared to a coupled map system with similar local couplings plus a
global interaction. It is shown that, under some conditions, the emergent
patterns in both systems are analogous. Based on the knowledge of the dynamical
responses of the driven lattice, we present a method that allows the prediction
of parameter values for the emergence of ordered spatiotemporal patterns in a
class of coupled map systems having local coupling and general forms of global
interactions.Comment: 7 pages, 3 figs, submitted to PRE (2002
Simple Models for Turbulent Self-Regulation in Galaxy Disks
We propose that turbulent heating, wave pressure and gas exchanges between
different regions of disks play a dominant role in determining the preferred,
quasi-equilibrium, self-similar states of gas disks on large-scales. We present
simple families of analytic, thermohydrodynamic models for these global states,
which include terms for turbulent pressure and Reynolds stresses. Star
formation rates, phase balances, and hydrodynamic forces are all tightly
coupled and balanced. The models have stratified radial flows, with the cold
gas slowly flowing inward in the midplane of the disk, and with the warm/hot
phases that surround the midplane flowing outward.
The models suggest a number of results that are in accord with observation,
as well as some novel predictions, including the following. 1) The large-scale
gas density and thermal phase distributions in galaxy disks can be explained as
the result of turbulent heating and spatial couplings. 2) The turbulent
pressures and stresses that drive radial outflows in the warm gas also allow a
reduced circular velocity there. This effect was observed by Swaters, Sancisi
and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models
predict that the effect should be universal in such disks. 3) They suggest that
a star formation rate like the phenomenological Schmidt Law is the natural
result of global thermohydrodynamical balance, and may not obtain in disks far
from equilibrium. (Abridged)Comment: 37 pages, 1 gif figure, accepted for publication in the Astrophysical
Journa
Periodicity Manifestations in the Turbulent Regime of Globally Coupled Map Lattice
We revisit the globally coupled map lattice (GCML). We show that in the so
called turbulent regime various periodic cluster attractor states are formed
even though the coupling between the maps are very small relative to the
non-linearity in the element maps.
Most outstanding is a maximally symmetric three cluster attractor in period
three motion (MSCA) due to the foliation of the period three window of the
element logistic maps. An analytic approach is proposed which explains
successfully the systematics of various periodicity manifestations in the
turbulent regime. The linear stability of the period three cluster attractors
is investigated.Comment: 34 pages, 8 Postscript figures, all in GCML-MSCA.Zi
- …
