658 research outputs found
A review of type Ia supernova spectra
SN 2011fe was the nearest and best-observed type Ia supernova in a
generation, and brought previous incomplete datasets into sharp contrast with
the detailed new data. In retrospect, documenting spectroscopic behaviors of
type Ia supernovae has been more often limited by sparse and incomplete
temporal sampling than by consequences of signal-to-noise ratios, telluric
features, or small sample sizes. As a result, type Ia supernovae have been
primarily studied insofar as parameters discretized by relative epochs and
incomplete temporal snapshots near maximum light. Here we discuss a necessary
next step toward consistently modeling and directly measuring spectroscopic
observables of type Ia supernova spectra. In addition, we analyze current
spectroscopic data in the parameter space defined by empirical metrics, which
will be relevant even after progenitors are observed and detailed models are
refined.Comment: 58 pages, 15 figures, 6 tables, accepted for publication in Ap&SS as
an invited revie
Analysis of the Early-time Optical Spectra of SN 2011fe in M101
The nearby Type Ia supernova (SN Ia) SN 2011fe in M101 (cz = 241 km s^(–1)) provides a unique opportunity to study the early evolution of a "normal" SN Ia, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, showing overlapping regions of burned and unburned material between ejection velocities of 10,000 and 16,000 km s^(–1). This supports the notion that incomplete burning, in addition to progenitor scenarios, is a relevant source of spectroscopic diversity among SNe Ia. The observed evolution of the highly Doppler-shifted O I λ7774 absorption features detected within 5 days post-explosion indicates the presence of O I with expansion velocities from 11,500 to 21,000 km s^(–1). The fact that some O I is present above C II suggests that SN 2011fe may have had an appreciable amount of unburned oxygen within the outer layers of the ejecta
Supernova Resonance--scattering Line Profiles in the Absence of a Photosphere
In supernova spectroscopy relatively little attention has been given to the
properties of optically thick spectral lines in epochs following the
photosphere's recession. Most treatments and analyses of post-photospheric
optical spectra of supernovae assume that forbidden-line emission comprises
most if not all spectral features. However, evidence exists which suggests that
some spectra exhibit line profiles formed via optically thick
resonance-scattering even months or years after the supernova explosion. To
explore this possibility we present a geometrical approach to supernova
spectrum formation based on the "Elementary Supernova" model, wherein we
investigate the characteristics of resonance-scattering in optically thick
lines while replacing the photosphere with a transparent central core emitting
non-blackbody continuum radiation, akin to the optical continuum provided by
decaying 56Co formed during the explosion. We develop the mathematical
framework necessary for solving the radiative transfer equation under these
conditions, and calculate spectra for both isolated and blended lines. Our
comparisons with analogous results from the Elementary Supernova code SYNOW
reveal several marked differences in line formation. Most notably, resonance
lines in these conditions form P Cygni-like profiles, but the emission peaks
and absorption troughs shift redward and blueward, respectively, from the
line's rest wavelength by a significant amount, despite the spherically
symmetric distribution of the line optical depth in the ejecta. These
properties and others that we find in this work could lead to misidentification
of lines or misattribution of properties of line-forming material at
post-photospheric times in supernova optical spectra.Comment: 37 pages, 24 figures; accepted for publication in ApJ Supplement
Serie
Studying the small scale ISM structure with supernovae
AIMS. In this work we explore the possibility of using the fast expansion of
a Type Ia supernova photosphere to detect extra-galactic ISM column density
variations on spatial scales of ~100 AU on time scales of a few months.
METHODS. We constructed a simple model which describes the expansion of the
photodisk and the effects of a patchy interstellar cloud on the observed
equivalent width of Na I D lines. Using this model we derived the behavior of
the equivalent width as a function of time, spatial scale and amplitude of the
column density fluctuations.
RESULTS. The calculations show that isolated, small (<100 AU) clouds with Na
I column densities exceeding a few 10^11 cm^-2 would be easily detected. In
contrast, the effects of a more realistic, patchy ISM become measurable in a
fraction of cases, and for peak-to-peak variations larger than ~10^12 cm^-2 on
a scale of 1000 AU.
CONCLUSIONS. The proposed technique provides a unique way to probe the
extra-galactic small scale structure, which is out of reach for any of the
methods used so far. The same tool can also be applied to study the sub-AU
Galactic ISM structure.Comment: 6 pages, 3 figures. Accepted for publication in Astronomy &
Astrophysic
Dust in the wind: the role of recent mass loss in long gamma-ray bursts
We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long
Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with
slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is
inconsistent with forward shock synchrotron radiation associated with the
afterglow. These explosions also show larger-than-average intrinsic absorption
(NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration
(T_90>1000 s). Chance association of these three rare properties (i.e. large
NH_x,i, super-soft Gamma_x and extreme duration) in the same class of
explosions is statistically unlikely. We associate these properties with the
turbulent mass-loss history of the progenitor star that enriched and shaped the
circum-burst medium. We identify a natural connection between NH_x,i Gamma_x
and T_90 in these sources by suggesting that the late-time super-soft X-rays
originate from radiation reprocessed by material lost to the environment by the
stellar progenitor before exploding, (either in the form of a dust echo or as
reprocessed radiation from a long-lived GRB remnant), and that the interaction
of the explosion's shock/jet with the complex medium is the source of the
extremely long prompt emission. However, current observations do not allow us
to exclude the possibility that super-soft X-ray emitters originate from
peculiar stellar progenitors with large radii that only form in very dusty
environments.Comment: 6 pages, Submitted to Ap
Radio and X-rays From SN 2013df Enlighten Progenitors of Type IIb Supernovae
We present radio and X-ray observations of the nearby Type IIb Supernova
2013df in NGC4414 from 10 to 250 days after the explosion. The radio emission
showed a peculiar soft-to-hard spectral evolution. We present a model in which
inverse Compton cooling of synchrotron emitting electrons can account for the
observed spectral and light curve evolution. A significant mass loss rate,
for a wind velocity of 10
km/s, is estimated from the detailed modeling of radio and X-ray emission,
which are primarily due to synchrotron and bremsstrahlung, respectively. We
show that SN 2013df is similar to SN 1993J in various ways. The shock wave
speed of SN 2013df was found to be average among the radio supernovae;
. We did not find any significant deviation from smooth
decline in the light curve of SN 2013df. One of the main results of our
self-consistent multiband modeling is the significant deviation from energy
equipartition between magnetic fields and relativistic electrons behind the
shock. We estimate . In general for Type IIb
SNe, we find that the presence of bright optical cooling envelope emission is
linked with free-free radio absorption and bright thermal X-ray emission. This
finding suggests that more extended progenitors, similar to that of SN 2013df,
suffer from substantial mass loss in the years before the supernova.Comment: 15 pages, 7 figures, 1 table; Submitted to The Astrophysical Journa
No X-rays from the very nearby Type Ia SN2014J: constraints on its environment
Deep X-ray observations of the post-explosion environment around the very
nearby Type Ia SN\,2014J (Dl=3.5 Mpc) reveal no X-ray emission down to a
luminosity L<7x10^{36} erg/s (0.3-10 keV) at t~20 days after the explosion. We
interpret this limit in the context of Inverse Compton emission from
upscattered optical photons by the supernova shock and constrain the
pre-explosion mass-loss rate of the stellar progenitor system to be <10^{-9}
M_sun yr-1 (for wind velocity v_w=100 km/s). Alternatively, the SN shock might
be expanding into a uniform medium with density $n_CSM<3 cm-3. These results
rule out single-degenerate (SD) systems with steady mass-loss until the
terminal explosion and constrain the fraction of transferred material lost at
the outer Lagrangian point to be <1%. The allowed progenitors are (i) WD-WD
progenitors, (ii) SD systems with unstable hydrogen burning experiencing
recurrent nova eruptions with recurrence time t<300 yrs and (iii) stars where
the mass loss ceases before the explosion.Comment: 9 pages, Submitted to Ap
Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN\,2012ap
Deep late-time X-ray observations of the relativistic, engine-driven, type Ic
SN2012ap allow us to probe the nearby environment of the explosion and reveal
the unique properties of relativistic SNe. We find that on a local scale of
~0.01 pc the environment was shaped directly by the evolution of the progenitor
star with a pre-explosion mass-loss rate <5x10^-6 Msun yr-1 in line with GRBs
and the other relativistic SN2009bb. Like sub-energetic GRBs, SN2012ap is
characterized by a bright radio emission and evidence for mildly relativistic
ejecta. However, its late time (t~20 days) X-ray emission is ~100 times fainter
than the faintest sub-energetic GRB at the same epoch, with no evidence for
late-time central engine activity. These results support theoretical proposals
that link relativistic SNe like 2009bb and 2012ap with the weakest observed
engine-driven explosions, where the jet barely fails to breakout. Furthermore,
our observations demonstrate that the difference between relativistic SNe and
sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This
phenomenology can either be due to an intrinsically shorter-lived engine or to
a more extended progenitor in relativistic SNe.Comment: Version accepted to ApJ. Significantly broadened discussio
- …
