307 research outputs found

    Dust in the wind: the role of recent mass loss in long gamma-ray bursts

    Full text link
    We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is inconsistent with forward shock synchrotron radiation associated with the afterglow. These explosions also show larger-than-average intrinsic absorption (NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration (T_90>1000 s). Chance association of these three rare properties (i.e. large NH_x,i, super-soft Gamma_x and extreme duration) in the same class of explosions is statistically unlikely. We associate these properties with the turbulent mass-loss history of the progenitor star that enriched and shaped the circum-burst medium. We identify a natural connection between NH_x,i Gamma_x and T_90 in these sources by suggesting that the late-time super-soft X-rays originate from radiation reprocessed by material lost to the environment by the stellar progenitor before exploding, (either in the form of a dust echo or as reprocessed radiation from a long-lived GRB remnant), and that the interaction of the explosion's shock/jet with the complex medium is the source of the extremely long prompt emission. However, current observations do not allow us to exclude the possibility that super-soft X-ray emitters originate from peculiar stellar progenitors with large radii that only form in very dusty environments.Comment: 6 pages, Submitted to Ap

    No X-rays from the very nearby Type Ia SN2014J: constraints on its environment

    Full text link
    Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN\,2014J (Dl=3.5 Mpc) reveal no X-ray emission down to a luminosity L<7x10^{36} erg/s (0.3-10 keV) at t~20 days after the explosion. We interpret this limit in the context of Inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be <10^{-9} M_sun yr-1 (for wind velocity v_w=100 km/s). Alternatively, the SN shock might be expanding into a uniform medium with density $n_CSM<3 cm-3. These results rule out single-degenerate (SD) systems with steady mass-loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be <1%. The allowed progenitors are (i) WD-WD progenitors, (ii) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t<300 yrs and (iii) stars where the mass loss ceases before the explosion.Comment: 9 pages, Submitted to Ap

    Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN\,2012ap

    Full text link
    Deep late-time X-ray observations of the relativistic, engine-driven, type Ic SN2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic SNe. We find that on a local scale of ~0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate <5x10^-6 Msun yr-1 in line with GRBs and the other relativistic SN2009bb. Like sub-energetic GRBs, SN2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late time (t~20 days) X-ray emission is ~100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to breakout. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.Comment: Version accepted to ApJ. Significantly broadened discussio

    Comparative Direct Analysis of Type Ia Supernova Spectra. II. Maximum Light

    Full text link
    A comparative study of near-maximum-light optical spectra of 24 Type Ia supernovae (SNe Ia) is presented. The spectra are quantified in two ways, and assigned to four groups. Seven "core-normal" SNe Ia have very similar spectra, except for strong high-velocity CaII absorption in SN 2001el. Seven SNe Ia are assigned to a "broad-line" group, the most extreme of which is SN 1984A. Five SNe Ia, including SN 1991bg, are assigned to a "cool" group. Five SNe Ia, including SN 1991T, are assigned to a "shallow-silicon" group. Comparisons with SYNOW synthetic spectra provide a basis for discussion of line identifications, and an internally consistent quantification of the maximum-light spectroscopic diversity among SNe Ia. The extent to which SN Ia maximum-light spectra appear to have a continuous distribution of properties, rather than consisting of discrete subtypes, is discussed.Comment: 38 pages including 14 figures and 5 tables, submitted to PAS

    Comparative Direct Analysis of Type Ia Supernova Spectra. IV. Postmaximum

    Full text link
    A comparative study of optical spectra of Type Ia supernovae (SNe Ia) obtained near 1 week, 3 weeks, and 3 months after maximum light is presented. Most members of the four groups that were defined on the basis of maximum light spectra in Paper II (core normal, broad line, cool, and shallow silicon) develop highly homogeneous postmaximum spectra, although there are interesting exceptions. Comparisons with SYNOW synthetic spectra show that most of the spectral features can be accounted for in a plausible way. The fits show that 3 months after maximum light, when SN Ia spectra are often said to be in the nebular phase and to consist of forbidden emission lines, the spectra actually remain dominated by resonance scattering features of permitted lines, primarily those of Fe II. Even in SN 1991bg, which is said to have made a very early transition to the nebular phase, there is no need to appeal to forbidden lines at 3 weeks postmaximum, and at 3 months postmaximum the only clear identification of a forbidden line is [Ca II] 7291, 7324. Recent studies of SN Ia rates indicate that most of the SNe Ia that have ever occurred have been "prompt" SNe Ia, produced by young (100,000,000 yr) stellar populations, while most of the SNe Ia that occur at low redshift today are "tardy", produced by an older (several Gyrs) population. We suggest that the shallow silicon SNe Ia tend to be the prompt ones.Comment: Accepted by PAS

    iPTF15eqv: Multi-wavelength Expos\'e of a Peculiar Calcium-rich Transient

    Full text link
    The progenitor systems of the class of "Ca-rich transients" is a key open issue in time domain astrophysics. These intriguing objects exhibit unusually strong calcium line emissions months after explosion, fall within an intermediate luminosity range, are often found at large projected distances from their host galaxies, and may play a vital role in enriching galaxies and the intergalactic medium. Here we present multi-wavelength observations of iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that bridge those observed in Ca-rich transients and Type Ib/c supernovae. iPTF15eqv has among the highest [Ca II]/[O I] emission line ratios observed to date, yet is more luminous and decays more slowly than other Ca-rich transients. Optical and near-infrared photometry and spectroscopy reveal signatures consistent with the supernova explosion of a < 10 solar mass star that was stripped of its H-rich envelope via binary interaction. Distinct chemical abundances and ejecta kinematics suggest that the core collapse occurred through electron capture processes. Deep limits on possible radio emission made with the Jansky Very Large Array imply a clean environment (n<n < 0.1 cm3^{-3}) within a radius of 1017\sim 10^{17} cm. Chandra X-ray Observatory observations rule out alternative scenarios involving tidal disruption of a white dwarf by a black hole, for masses > 100 solar masses). Our results challenge the notion that spectroscopically classified Ca-rich transients only originate from white dwarf progenitor systems, complicate the view that they are all associated with large ejection velocities, and indicate that their chemical abundances may vary widely between events.Comment: 24 pages, 16 figures. Closely matches version published in The Astrophysical Journa

    A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array

    Full text link
    Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt (delta t <~ 1 yr) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5--216 days after explosion, yielding Mdot/v_w <~ 5 x 10^-9 M_sun/yr / (100 km/s), assuming epsilon_B = 0.1 and epsilon_e = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits ranging from Mdot <~ 10^-9--10^-4 M_sun/yr, assuming a wind velocity v_w=100 km/s. We compare our radio constraints with measurements of Galactic symbiotic binaries to conclude that <~10% of thermonuclear SNe have red giant companions.Comment: Submitted to Ap
    corecore