756 research outputs found
Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron
We address known discrepancies between the heavy flavor properties of jets
produced at the Tevatron collider and the prediction of conventional-QCD
simulations. In this study, we entertain the possibility that these effects are
real and due to new physics. We show that all anomalies can be simultaneously
fitted by postulating the additional pair production of light bottom squarks
with a 100% semileptonic branching fraction.Comment: 30 pages, 13 figures, 3 tables. Submitted to Phys. Rev.
Study of sequential semileptonic decays of b hadrons produced at the Tevatron
We present a study of rates and kinematical properties of lepton pairs
contained in central jets with transverse energy E_T > 15 GeV that are produced
at the Fermilab Tevatron collider. We compare the data to a QCD prediction
based on the HERWIG and QQ Monte Carlo generator programs.We find that the data
are poorly described by the simulation, in which sequential semileptonic decays
of single b quarks (b --> l c X with c --> l s X) are the major source of such
lepton pairs.Comment: 25 pages, 8 figures. Some typos were fixed in the text and
bibliography. Submitted to Phys. Rev.
Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy
We show that the accuracy of energy-dispersive X-ray spectroscopy can be improved by analysing and comparing multiple lines from the same element. For each line, an effective k-factor can be defined that varies as a function of the intensity ratio of multiple lines (e.g. K/L) from the same element. This basically performs an internal self-consistency check in the quantification using differently absorbed X-ray lines, which is in principle equivalent to an absorption correction as a function of specimen thickness but has the practical advantage that the specimen thickness itself does not actually need to be measured
Astrocyte-Mediated Neuronal Synchronization Properties Revealed by False Gliotransmitter Release
Astrocytes spontaneously release glutamate (Glut) as a gliotransmitter (GT), resulting in the generation of extrasynaptic NMDAR-mediated slow inward currents (SICs) in neighboring neurons, which can increase local neuronal excitability. However, there is a deficit in our knowledge of the factors that control spontaneous astrocyte GT release and the extent of its influence. We found that, in rat brain slices, increasing the supply of the physiological transmitter Glut increased the frequency and signaling charge of SICs over an extended period. This phenomenon was replicated by exogenous preexposure to the amino acid D-aspartate (D-Asp). Using D-Asp as a "false" GT, we determined the extent of local neuron excitation by GT release in ventrobasal thalamus, CA1 hippocampus, and somatosensory cortex. By analyzing synchronized neuronal NMDAR-mediated excitation, we found that the properties of the excitation were conserved in different brain areas. In the three areas, astrocyte-derived GT release synchronized groups of neurons at distances of >;200 μm. Individual neurons participated in more than one synchronized population, indicating that individual neurons can be excited by more than one astrocyte and that individual astrocytes may determine a neuron's synchronized network. The results confirm that astrocytes can act as excitatory nodes that can influence neurons over a significant range in a number of brain regions. Our findings further suggest that chronic elevation of ambient Glut levels can lead to increased GT Glut release, which may be relevant in some pathological states. Astrocytes spontaneously release glutamate (Glut) and other gliotransmitters (GTs) that can modify neuronal activity. Exposing brain slices to Glut and D-aspartate (D-Asp) before recording resulted in an increase in frequency of GT-mediated astrocyte-neuron signaling. Using D-Asp, it was possible to investigate the effects of specific GT release at neuronal NMDARs. Calcium imaging showed synchronized activity in groups of neurons in cortex, hippocampus, and thalamus. The size of these populations was similar in all areas and some neurons were involved in more than one synchronous group. The findings show that GT release is supply dependent and that the properties of the signaling and activated networks are largely conserved between different brain areas
Osteopontin plasma levels and accelerated atherosclerosis in patients with CAD undergoing PCI: a prospective clinical study.
OBJECTIVES: Growing evidence supports the role played by inflammation in atherosclerosis. Identifying sensitive biomarkers is useful in predicting accelerated atherosclerosis. We investigated prospectively the relationship between plasma levels of inflammatory biomarkers [osteopontin, C-reactive protein (CRP), interleukin-6 (IL-6)] and instent restenosis, and rapid coronary plaque progression in patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). METHODS: We studied 77 patients with CAD: 45 affected by unstable angina/non-ST elevation myocardial infarction [acute coronary syndrome (ACS)], and 32 by chronic coronary syndrome (CCS). Plasma osteopontin, IL-6, and CRP levels were measured before intervention in all patients; measurements were carried out on the basis of the following time course at 1,15, 30, 90, and 180 days follow-up in a subgroup of 39 consenting patients. Clinical and biohumoral data were correlated with baseline and 6-month PCI follow-up angiography. RESULTS: Osteopontin, IL-6, and CRP were higher in patients with ACS than in those with CCS (analysis of variance: P<0.001, 0.05, and 0.05, respectively). Baseline osteopontin levels proved to be associated with rapid coronary plaque progression (P=0.005) and instent restenosis (P=0.05). The highest osteopontin levels were found in patients with CAD with both rapid plaque progression and instent restenosis (P=0.003). PCI increased inflammatory markers acutely, and osteopontin remained elevated in patients with ACS. Patients with ACS showed a higher percentage (74%) of rapid plaque progression than those with CCS (26%) (P<0.05). CONCLUSION: The study prospectively shows the link between inflammatory status and accelerated atherosclerosis in patients with CAD undergoing PCI. The baseline and persistent rise of osteopontin is an expression of its contribution to the accelerated plaque progression, and therefore osteopontin may be a useful prognostic biomarker
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Laboratory data integration into medical record
Laboratory Information System, integrated with the Hospital Information System, has been developed at the G.Pasquinucci Hospital, section of Institute of Clinical Physiology of National Research Council (CNR), specialized in adult and paediatric cardiac surgery. The aim was to automate the testing process from clinical departments to laboratory and back into medical record. Laboratory workflow consists of three parts: (a) test ordering by clinical staff, printing bar-coded ID labels and transmitting orders by network to laboratory; (b) processing test requests and controlling identified specimens by laboratory staff, providing work orders to analytical instruments and validation of results authorizing delivery into the hospital clinical repository; (c) consulting test results in clinical departments by referring physicians through the electronic medical record. This year the system has been used on adult patients processing 135000 laboratory tests concerning chemistry, haematology, coagulation and immunology
- …
