1,469 research outputs found
Weak G-band stars on the H-R Diagram: Clues to the origin of Li anomaly
Weak G-band (WGB) stars are a rare class of cool luminous stars that present
a strong depletion in carbon, but also lithium abundance anomalies that have
been little explored in the literature since the first discovery of these
peculiar objects in the early 50's. Here we focus on the Li-rich WGB stars and
report on their evolutionary status. We explore different paths to propose a
tentative explanation for the lithium anomaly. Using archive data, we derive
the fundamental parameters of WGB (Teff, log g, log(L/Lsun)) using Hipparcos
parallaxes and recent temperature scales. From the equivalent widths of Li
resonance line at 6707 {\AA}, we uniformly derive the lithium abundances and
apply when possible NLTE corrections following the procedure described by Lind
et al. (2009). We also compute dedicated stellar evolution models in the mass
range 3.0 to 4.5 Msun, exploring the effects of rotation-induced and
thermohaline mixing. These models are used to locate the WGB stars in the H-R
diagram and to explore the origin of the abundance anomalies. The location of
WGB stars in the H-R diagram shows that these are intermediate mass stars of
masses ranging from 3.0 to 4.5 Msun located at the clump, which implies a
degeneracy of their evolutionary status between subgiant/red giant branch and
core helium burning phases. The atmospheres of a large proportion of WGB stars
(more than 50%) exhibit lithium abundances A(Li) \geq 1.4 dex similar to
Li-rich K giants. The position of WGB stars along with the Li-rich K giants in
the H-R diagram however indicates that both are well separated groups. The
combined and tentatively consistent analysis of the abundance pattern for
lithium, carbon and nitrogen of WGB stars seems to indicate that carbon
underabundance could be decorrelated from the lithium and nitrogen
overabundances.Comment: 13 pages, 3 figures, Accepted for publication in Astronomy and
Astrophysic
Photometry and low resolution spectroscopy of hot post-AGB candidates
We have obtained Johnson U, B, V and Cousins R, I photometry and low
resolution spectra of a small sample of hot post-AGB candidates. Using the
present data in combination with JHK data from 2MASS, infrared data from the
MSX catalog and the IRAS fluxes, we have studied the spectral energy
distribution (SED) of these stars. Using the DUSTY code we have estimated the
dust temperatures, the distances to the stars, the mass-loss rates, angular
radii of the inner boundary of the dust envelopes and dynamical ages from the
tip of the AGB. These candidates have also been imaged through a narrow band
H-alpha filter, to search for nebulosity around the central stars. Our H-alpha
images revealed the bipolar morphology of the low excitation PN IRAS 17395-0841
with an angular extent of 2.8arcsec. The bipolar lobes of IRAS 17423-1755 in
H-alpha were found to have an angular extent of 3.5arcsec (south-east lobe) and
2.2arcsec (north-west lobe). The dust envelope characteristics, low resolution
spectrum and IRAS colors suggest that IRAS 18313-1738 is similar to the
proto-planetary nebula (PPN) HD 51585. The SED of IRAS 17423-1755, IRAS
18313-1738 and IRAS 19127+1717 show a warm dust component (in addition to the
cold dust) which may be due to recent and ongoing mass-loss.Comment: 20 pages, 6 figures, h-alpha figure compressed with XV, paper
accepted for publication in Astronomy & Astrophysic
Motivation for on-farm conservation of mango (Mangifera indica) diversity in India – a case study
Testing and calibration of Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs)
Improved content based watermarking for images
Due to improvements in imaging technologies and the ease with which digital content can be created and manipulated, there is need for the copyright protection of digital content. It is also essential to have techniques for authentication of the content as well as the owner. To this end, this thesis proposes a robust and transparent scheme of watermarking that exploits the human visual systems’ sensitivity to frequency, along with local image characteristics obtained from the spatial domain, improving upon the content based image watermarking scheme of Kay and Izquierdo. We implement changes in this algorithm without much distortion to the image, while making it possible to extract the watermark by use of correlation. The underlying idea is generating a visual mask based on the human visual systems’ perception of image content. This mask is used to embed a decimal sequence, while keeping its amplitude below the distortion sensitivity of the image pixel. We consider texture, luminance, corner and the edge information in the image to generate a mask that makes the addition of the watermark less perceptible to the human eye. The operation of embedding and extraction of the watermark is done in the frequency domain thereby providing robustness against common frequency-based attacks including image compression and filtering. We use decimal sequences for watermarking instead of pseudo random sequences, providing us with a greater flexibility in the choice of sequence. Weighted Peak Signal to Noise Ratio is used to evaluate the perceptual change between the original and the watermarked image
Three dimensional quadratic algebras: Some realizations and representations
Four classes of three dimensional quadratic algebras of the type \lsb Q_0 ,
Q_\pm \rsb , \lsb Q_+ , Q_- \rsb ,
where are constants or central elements of the algebra, are
constructed using a generalization of the well known two-mode bosonic
realizations of and . The resulting matrix representations and
single variable differential operator realizations are obtained. Some remarks
on the mathematical and physical relevance of such algebras are given.Comment: LaTeX2e, 23 pages, to appear in J. Phys. A: Math. Ge
Recommended from our members
The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannual variability
The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change
- …
