128 research outputs found
Small time deposits and the recent weakness in M2
The authors review the supply and demand side developments that may have contributed to the recent decline in small time deposits and weak M2 growth. They also consider whether M2 should be redefined to exclude small time deposits in light of the recent difficulties in interpreting the performance of M2.Bank deposits ; Money supply ; Bank loans
Recent innovations in Treasury cash management
The Treasury Tax and Loan program, a joint undertaking of the Treasury and the Federal Reserve, is designed to manage federal tax receipts and stabilize the supply of reserves in the banking system. Three recent innovations-electronic collection of business taxes, real-time investment of excess Treasury balances, and competitive bidding for Treasury deposits-have materially enhanced the ability of the two agencies to achieve these objectives.Taxation ; Tax and loan account ; Federal Reserve System
Superfine Powdered Activated Carbon (S-PAC) Coupled with Microfiltration for the Removal of Trace Organics in Drinking Water Treatment
Anthropogenic contaminants - such as pharmaceuticals and personal care products - are an area of emerging concern in the treatment of drinking water. An integrated activated carbon membrane coating consisting of superfine powdered activated carbon (S-PAC) with particle size near or below one micrometer was explored to enhance removal of trace synthetic organic contaminants (SOCs) from water. S-PAC was chosen for its fast adsorption rates relative to conventionally sized PAC and atrazine was chosen as a model SOC. S-PAC and microfiltration membranes have a symbiotic relationship; membrane filtration separates S-PAC from water, while S-PAC adds capacity for a membrane process to remove soluble components. Three aspects of S-PAC in conjunction with membranes were examined, fouling by S-PAC on the membrane, effects of S-PAC production on material parameters, and modeling of S-PAC adsorption with and without a membrane. Fouling caused by carbon particles can result in marked reduction of filtration rate and an increased cost of operation. Since larger carbon particles foul less than smaller particles, while smaller carbons have faster adsorption performance, states of carbon aggregation were tested for filtration. Particles aggregated using the coagulant ferric chloride resulted in improved flux, while aluminum sulfate and polyaluminum chloride resulted in the same or worse filtration rates. A calcium chloride control showed that increased effective particle size via divalent bridging was very successful in reducing fouling. While particle size increased with conventional coagulants, the unflocculated metal precipitates likely contributed to membrane fouling. The methods of producing S-PAC determine material properties that affect both adsorption and filtration performance. In-house S-PACs - including multiple sizes of several carbon types - were prepared by wet bead milling and measured for both physical and chemical material parameters. Physical parameters, aside from particle size, did not change deterministically with milling duration, although stochastic changes were observed. Chemical measurements revealed a heavily oxidized external particle surface resulting from a high energy milling environment. Surfaces of interior pores appeared to be unaffected. Adsorption via batch kinetics and adsorption via S-PAC coating were modeled with analytical and computational models, respectively, using experimental data produced from the in-house S-PACs. The experimental data showed that removal of atrazine by S-PAC membrane coating correlated most strongly to a combination of oxygen content and the specific external surface area, while membrane fouling correlated to particle size and the specific external surface area. Batch kinetics data were modeled with the homogeneous surface diffusion model (HSDM) while membrane coating data were modeled with computational fluid dynamics (CFD). The fitted models required isotherm parameters indicative of an adsorbent with more capacity than was measured for S-PAC experimentally. Lastly, surface diffusion coefficients were neither constant nor varied with any measured material parameter. However, both model parameters correlated with overall atrazine removal, which indicates that model fits are related to performance, but it is not yet clear how they are connected
Nuclear Flow in Consistent Boltzmann Algorithm Models
We investigate the stochastic Direct Simulation Monte Carlo method (DSMC) for
numerically solving the collision-term in heavy-ion transport theories of the
Boltzmann-Uehling-Uhlenbeck (BUU) type. The first major modification we
consider is changes in the collision rates due to excluded volume and
shadowing/screening effects (Enskog theory). The second effect studied by us is
the inclusion of an additional advection term. These modifications ensure a
non-vanishing second virial and change the equation of state for the scattering
process from that of an ideal gas to that of a hard-sphere gas. We analyse the
effect of these modifications on the calculated value of directed nuclear
collective flow in heavy ion collisions, and find that the flow slightly
increases.Comment: 12 pages, REVTeX, figures available in PostScript from the authors
upon reques
Dissolved Carbon Dioxide for Scale Removal in Reverse Osmosis
Membrane fouling is a major operational issue in reverse osmosis (RO) desalination plants. In particular, plants treating brackish groundwater can encounter troublesome inorganic scales, including carbonates, sulfates, and silicates. A novel cleaning method is proposed to remove inorganic scales from fouled RO membranes usinag dissolved CO 2 . As CO2 molecules encounter membrane foulants, the surfaces serve as nucleation sites for small bubbles to form and shear off foulants. Dissolved CO2 solutions were prepared by bubbling CO2 gas into water held in a pressure vessel. Gas dissolution was confirmed by enhanced exit velocities for water containing CO2 , due to the increase in volume from exsolution, when compared to water containing less soluble N2 . A dissolved CO2 solution was effective in removing scale from RO membranes through bubble nucleation. Membranes scaled with CaCO3 were cleaned for 10 minutes with a once-through dissolved CO2 solution of approximately pH 4.5, achieving an average 80% flux recovery. Controls were performed with other cleaning regimes to isolate effects from pH and air scouring present in CO2 cleaning. An HCl solution at pH 3 provided an average flux recovery of 79% after circulating through the system for 30 minutes, while an HCl solution at pH 4 only gave an average 20% flux recovery. Trials using N2 gas in place of CO2 only produced a 6% flux recovery on average. Lowering the pH of the N2 solution to pH 4 with HCl boosted cleaning slightly to an average 8% flux recovery. Thus, the low pH of the CO2 solution at pH 4.5 and bulk phase air scouring are minor mechanisms in scale removal. In addition, membranes scaled with calcium silicates were not cleaned using dissolved CO2 - only NaOH at pH 12 plus sodium dodecyl sulfate provided significant cleaning. Future work should be done with additional scale types to narrow in on the mechanism for cleaning by dissolved CO2
Baryon flow at SIS energies
We calculate the baryon flow in the energy range from .25 to
in a relativistic transport model for and
collisions employing various models for the baryon self energies. We find that
to describe the flow data of the FOPI Collaboration the strength of the vector
potential has to be reduced at high relative momentum or at high density such
that the Schr\"odinger- equivalent potential at normal nuclear density
decreases above 1 GeV relative kinetic energy and approaches zero above 2 GeV.Comment: 20 pages, LATEX, 7 PostScript figure
Anisotropic flow in 4.2A GeV/c C+Ta collisions
Anisotropic flow of protons and negative pions in 4.2A GeV/c C+Ta collisions
is studied using the Fourier analysis of azimuthal distributions. The protons
exhibit pronounced directed flow. Directed flow of pions is positive in the
entire rapidity interval and indicates that the pions are preferentially
emitted in the reaction plane from the target to the projectile. The elliptic
flow of protons and negative pions is close to zero. Comparison with the
quark-gluon-string model (QGSM) and relativistic transport model (ART 1.0) show
that they both yield a flow signature similar to the experimental data.Comment: 4 pages, 3 figures, Accepted for publication in Phys. Rev.
Disappearance of Transverse Flow in Central Collisions for Heavier Nuclei
For the first time, mass dependence of balance energy only for heavier
systems has been studied. Our results are in excellent agreement with the data
which allow us to predict the balance energy of U+U, for the first time, around
37-39 MeV/nucleon. Also our results indicate a hard equation of state along
with nucleon-nucleon cross-section around 40 mb.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …
