193 research outputs found

    Perturbations in growth trajectory due to early diet affect age-related deterioration in performance

    Get PDF
    Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence. Using three-spined sticklebacks (Gasterosteus aculeatus), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls. However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation. Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season. Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation. These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction

    The Heumann-Hotzel model for aging revisited

    Full text link
    Since its proposition in 1995, the Heumann-Hotzel model has remained as an obscure model of biological aging. The main arguments used against it were its apparent inability to describe populations with many age intervals and its failure to prevent a population extinction when only deleterious mutations are present. We find that with a simple and minor change in the model these difficulties can be surmounted. Our numerical simulations show a plethora of interesting features: the catastrophic senescence, the Gompertz law and that postponing the reproduction increases the survival probability, as has already been experimentally confirmed for the Drosophila fly.Comment: 11 pages, 5 figures, to be published in Phys. Rev.

    Increasing 3D Supramolecular Order by Decreasing Molecular Order. A Comparative Study of Helical Assemblies of Dendronized Nonchlorinated and Tetrachlorinated Perylene Bisimides

    Get PDF
    A nonplanar, twisted, and flexible tetrachlorinated perylene bisimide (Cl4PBI) was functionalized with two AB3 minidendrons containing hydrogenated or semifluorinated dodecyl groups. The hydrogenated dendron was attached to the imide groups of Cl4PBI via m = 0, 1, and 2 methylenic units, whereas the dendron containing semifluorinated groups was attached via m = 3 or a di(ethylene oxide) linker (m = 2EO). The supramolecular structures of these compounds, determined by a combination of differential scanning calorimetry, X-ray diffraction, and solid-state NMR, were compared with those of nonchlorinated planar and rigid PBI reported previously, which demonstrated the thermodynamically controlled formation of 2D periodic arrays at high temperatures and 3D arrays at low temperatures. The molecularly less ordered Cl4PBI containing hydrogenated dendrons self-organize into exclusively 3D crystalline periodic arrays under thermodynamic control for m = 0 and 2, while the more highly molecularly ordered PBI produced less stable and ordered 3D crystals and also 2D assemblies. This induction of a higher degree of 3D order in supramolecular assemblies of the less well-ordered molecular building blocks was unanticipated. The semifluorinated dendronized Cl4PBI with m = 3 formed a 2D columnar hexagonal array under kinetic control, whereas the compound with m = 2EO formed an unusual 2D honeycomb-like hexagonal phase under thermodynamic control. These Cl4PBI compounds provide a new route to stable crystalline assemblies via thermodynamic control at lower temperatures than previously obtained with PBI, thus generating 3D order in an accessible range of temperature of interest for structural analysis and for technological applications

    Theory of coherent transport by an ultra-cold atomic Fermi gas through linear arrays of potential wells

    Full text link
    Growing interest is being given to transport of ultra-cold atomic gases through optical lattices generated by the interference of laser beams. In this connection we evaluate the phase-coherent transport of a spin-polarized gas of fermionic atoms along linear structures made from potential wells set in four alternative types of sequence. These are periodic chains of either identical wells or pairs of different wells, and chains of pairs of wells arranged in either a Fibonacci quasi-periodic sequence or a random sequence. The transmission coefficient of fermionic matter is evaluated in a T-matrix scattering approach by describing each array through a tight-binding Hamiltonian and by reducing it to an effective dimer by means of a decimation/renormalization method. The results are discussed in comparison with those pertaining to transport by Fermi-surface electrons coupled to an outgoing lead and by an atomic Bose-Einstein condensate. Main attention is given to (i) Bloch oscillations and their mapping into alternating-current flow through a Josephson junction; (ii) interference patterns that arise on period doubling and their analogy with beam splitting in optical interferometry; (iii) localization by quasi-periodic disorder inside a Fibonacci-ordered structure of double wells; and (iv) Anderson localization in a random structure of double wells.Comment: 14 pages, 4 figure

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    Search for new particles in the two-jet decay channel with the D0 detector

    No full text
    We present the results of a search for the production of new particles decaying into two jets in pbarp collisions at sqrt{s} = 1.8 TeV, using the DZero 1992-1995 data set corresponding to 109 pb^-1. We exclude at the 95% confidence level the production of excited quarks (q*) with masses below 775 GeV/c^2, the most restictive limit to date. We also exclude standard-model-like W' (Z') bosons with masses between 300 and 800 GeV/c^2 (400 and 640 GeV/c^2). A W' boson with mass << 300 GeV/c^2 has been excluded by previous measurements, and our lower limit is therefore the most stringent to date

    Self-organization of rectangular bipyramidal helical columns by supramolecular orientational memory epitaxially nucleated from a Frank-Kasper σ phase

    Get PDF
    Programming living and soft complex matter via primary structure and self-organization represents the key methodology employed to design functions in biological and synthetic nanoscience. Memory effects have been used to create commercial technologies including liquid crystal displays and biomedical applications based on shape memory polymers. Supramolecular orientational memory (SOM), induced by an epitaxial nucleation mediated by the close contact spheres of cubic phases, emerged as a pathway to engineer complex nanoscale soft matter of helical columnar hexagonal arrays. SOM preserves the crystallographic directions of close contact supramolecular spheres from the 3D phase upon cooling to the columnar hexagonal periodic array. Despite the diversity of 3D periodic and quasiperiodic nanoarrays of supramolecular dendrimers, including Frank-Kasper and quasicrystal, all examples of SOM to date were mediated by Im3m (body-centered cubic, BCC) and Pm3n (Frank-Kasper A15) cubic phases. Expanding the scope of SOM to non-cubic arrays is expected to generate additional morphologies that were not yet available by any other methods. Here we demonstrate the SOM of a dendronized triphenylene that self-organizes into helical columnar hexagonal and tetragonal P42/mnm (Frank-Kasper σ) phases. Structural analysis of oriented fibers by X-ray diffraction reveals that helical columnar hexagonal domains self-organize an unusual rectangular bipyramidal morphology upon cooling from the σ phase. The discovery of SOM in a non-cubic Frank-Kasper phase indicates that this methodology may be expanded to other periodic and quasiperiodic nanoarrays organized from self-assembling dendrimers and, most probably, to other soft and living complex matter

    Onset of Bronchodilation with Fluticasone/Formoterol Combination Versus Fluticasone/Salmeterol in an Open-Label, Randomized Study

    Get PDF
    Introduction: The inhaled corticosteroid, fluticasone propionate (fluticasone), and the long-acting beta2-agonist, formoterol fumarate (formoterol), have been combined in a single aerosol inhaler (fluticasone/formoterol). In a randomized, open-label study, fluticasone/formoterol showed similar efficacy to fluticasone/salmeterol after 12 weeks of treatment. This post-hoc analysis compared the onset of bronchodilation with the two treatments. Methods: Adults with mild-to-moderatesevere persistent asthma were randomized to fluticasone/formoterol (100/10 or 250/10 μg twice daily [b.i.d.]) or fluticasone/salmeterol (100/50 or 250/50 μg b.i.d.) for 12 weeks. The onset of bronchodilation (the first post-dose time point at which the forced expiratory volume in 1 second [FEV1] was ≥12% greater than the pre-dose value), responder rates (the proportion of patients achieving bronchodilation), and changes in FEV1 were assessed at days 0 (baseline) and 84. Results: Fluticasone/formoterol (n = 101) provided more rapid onset of bronchodilation than fluticasone/salmeterol (n = 101) over the first 120 min post-dose on days 0 (hazard ratio [HR] = 1.47 [95% CI 1.05–2.05]) and 84 (HR = 1.77 [95% CI 1.14–2.73]). The odds of a patient achieving bronchodilation within 5 min of dosing were almost four-times higher with fluticasone/formoterol than with fluticasone/salmeterol on day 0 (odds ratio [OR] = 3.97 [95% CI 1.96–8.03]) and almost 10-times higher on day 84 (OR = 9.58 [95% CI 2.14–42.90]); the odds of achieving bronchodilation within 120 min post-dose were approximately twofold higher with fluticasone/formoterol on both days. The overall percentage increase in least-squares (LS) mean FEV1 during the 120-min post-dose period was significantly greater with fluticasone/formoterol than fluticasone/salmeterol on days 0 (LS mean treatment difference: 4.70% [95% CI 1.57–7.83]; P = 0.003) and 84 (2.79% [95% CI 0.65–4.93]; P = 0.011). Conclusion: These analyses showed that fluticasone/formoterol provided a faster onset of bronchodilation than fluticasone/salmeterol, which was maintained over 12 weeks of treatment. This benefit may facilitate treatment adherence among patients with asthma

    Ageing-associated changes in transcriptional elongation influence longevity

    Get PDF
    Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1,2,3,4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin–IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm
    corecore