719 research outputs found

    Enhanced methods for local ancestry assignment in sequenced admixed individuals.

    Get PDF
    Inferring the ancestry at each locus in the genome of recently admixed individuals (e.g., Latino Americans) plays a major role in medical and population genetic inferences, ranging from finding disease-risk loci, to inferring recombination rates, to mapping missing contigs in the human genome. Although many methods for local ancestry inference have been proposed, most are designed for use with genotyping arrays and fail to make use of the full spectrum of data available from sequencing. In addition, current haplotype-based approaches are very computationally demanding, requiring large computational time for moderately large sample sizes. Here we present new methods for local ancestry inference that leverage continent-specific variants (CSVs) to attain increased performance over existing approaches in sequenced admixed genomes. A key feature of our approach is that it incorporates the admixed genomes themselves jointly with public datasets, such as 1000 Genomes, to improve the accuracy of CSV calling. We use simulations to show that our approach attains accuracy similar to widely used computationally intensive haplotype-based approaches with large decreases in runtime. Most importantly, we show that our method recovers comparable local ancestries, as the 1000 Genomes consensus local ancestry calls in the real admixed individuals from the 1000 Genomes Project. We extend our approach to account for low-coverage sequencing and show that accurate local ancestry inference can be attained at low sequencing coverage. Finally, we generalize CSVs to sub-continental population-specific variants (sCSVs) and show that in some cases it is possible to determine the sub-continental ancestry for short chromosomal segments on the basis of sCSVs

    Identification of causal genes for complex traits.

    Get PDF
    MotivationAlthough genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations.ResultsIn this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2.Availability and implementationSoftware is freely available for download at genetics.cs.ucla.edu/caviar

    Extending Admixture Mapping to Nuclear Pedigrees:Application to Sarcoidosis

    Get PDF
    We describe statistical methods that extend the application of admixture mapping from unrelated individuals to nuclear pedigrees, allowing existing pedigree-based collections to be fully exploited. Computational challenges have been overcome by developing a fast algorithm that exploits the factorial structure of the underlying model of ancestry transitions. This has been implemented as an extension of the program ADMIXMAP. We demonstrate the application of the method to a study of sarcoidosis in African Americans that has previously been analyzed only as an admixture mapping study restricted to unrelated individuals. Although the ancestry signals detected in this pedigree analysis are generally similar to those detected in the earlier analysis of unrelated cases, we are able to extract more information and this yields a much sharper exclusion map; using the classical criterion of an LOD score of minus 2, the pedigree analysis is able to exclude a risk ratio of 2 or more associated with African ancestry over 96% of the genome, compared with only 83% in the earlier analysis of unrelated individuals only. Although the pedigree extension of ADMIXMAP can use ancestry-informative markers only at relatively low density, it can use imputed ancestry states from programs such as WINPOP or HAPMIX that use dense SNP marker genotypes for admixture mapping. This extends both the efficiency and the range of application of this powerful gene mapping method

    Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture.

    Get PDF
    SNP-heritability is a fundamental quantity in the study of complex traits. Recent studies have shown that existing methods to estimate genome-wide SNP-heritability can yield biases when their assumptions are violated. While various approaches have been proposed to account for frequency- and linkage disequilibrium (LD)-dependent genetic architectures, it remains unclear which estimates reported in the literature are reliable. Here we show that genome-wide SNP-heritability can be accurately estimated from biobank-scale data irrespective of genetic architecture, without specifying a heritability model or partitioning SNPs by allele frequency and/or LD. We show analytically and through extensive simulations starting from real genotypes (UK Biobank, N = 337 K) that, unlike existing methods, our closed-form estimator is robust across a wide range of architectures. We provide estimates of SNP-heritability for 22 complex traits in the UK Biobank and show that, consistent with our results in simulations, existing biobank-scale methods yield estimates up to 30% different from our theoretically-justified approach

    Fast and accurate imputation of summary statistics enhances evidence of functional enrichment

    Full text link
    Imputation using external reference panels is a widely used approach for increasing power in GWAS and meta-analysis. Existing HMM-based imputation approaches require individual-level genotypes. Here, we develop a new method for Gaussian imputation from summary association statistics, a type of data that is becoming widely available. In simulations using 1000 Genomes (1000G) data, this method recovers 84% (54%) of the effective sample size for common (>5%) and low-frequency (1-5%) variants (increasing to 87% (60%) when summary LD information is available from target samples) versus 89% (67%) for HMM-based imputation, which cannot be applied to summary statistics. Our approach accounts for the limited sample size of the reference panel, a crucial step to eliminate false-positive associations, and is computationally very fast. As an empirical demonstration, we apply our method to 7 case-control phenotypes from the WTCCC data and a study of height in the British 1958 birth cohort (1958BC). Gaussian imputation from summary statistics recovers 95% (105%) of the effective sample size (as quantified by the ratio of χ2\chi^2 association statistics) compared to HMM-based imputation from individual-level genotypes at the 227 (176) published SNPs in the WTCCC (1958BC height) data. In addition, for publicly available summary statistics from large meta-analyses of 4 lipid traits, we publicly release imputed summary statistics at 1000G SNPs, which could not have been obtained using previously published methods, and demonstrate their accuracy by masking subsets of the data. We show that 1000G imputation using our approach increases the magnitude and statistical evidence of enrichment at genic vs. non-genic loci for these traits, as compared to an analysis without 1000G imputation. Thus, imputation of summary statistics will be a valuable tool in future functional enrichment analyses.Comment: 32 pages, 4 figure

    Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies

    Get PDF
    Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions. Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it empirically estimates the contribution of each functional annotation to the trait of interest directly from summary association statistics while allowing for multiple causal variants at any risk locus. We devise efficient algorithms that estimate the parameters of our model across all risk loci to further increase performance. Using simulations starting from the 1000 Genomes data, we find that our framework consistently outperforms the current state-of-the-art fine-mapping methods, reducing the number of variants that need to be selected to capture 90% of the causal variants from an average of 13.3 to 10.4 SNPs per locus (as compared to the next-best performing strategy). Furthermore, we introduce a cost-to-benefit optimization framework for determining the number of variants to be followed up in functional assays and assess its performance using real and simulation data. We validate our findings using a large scale meta-analysis of four blood lipids traits and find that the relative probability for causality is increased for variants in exons and transcription start sites and decreased in repressed genomic regions at the risk loci of these traits. Using these highly predictive, trait-specific functional annotations, we estimate causality probabilities across all traits and variants, reducing the size of the 90% confidence set from an average of 17.5 to 13.5 variants per locus in this data

    Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits

    Get PDF
    Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays
    corecore