8,197 research outputs found

    Learning parametric dictionaries for graph signals

    Get PDF
    In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties -- the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on weighted graphs, an additional design challenge is to incorporate the intrinsic geometric structure of the irregular data domain into the atoms of the dictionary. In this work, we propose a parametric dictionary learning algorithm to design data-adapted, structured dictionaries that sparsely represent graph signals. In particular, we model graph signals as combinations of overlapping local patterns. We impose the constraint that each dictionary is a concatenation of subdictionaries, with each subdictionary being a polynomial of the graph Laplacian matrix, representing a single pattern translated to different areas of the graph. The learning algorithm adapts the patterns to a training set of graph signals. Experimental results on both synthetic and real datasets demonstrate that the dictionaries learned by the proposed algorithm are competitive with and often better than unstructured dictionaries learned by state-of-the-art numerical learning algorithms in terms of sparse approximation of graph signals. In contrast to the unstructured dictionaries, however, the dictionaries learned by the proposed algorithm feature localized atoms and can be implemented in a computationally efficient manner in signal processing tasks such as compression, denoising, and classification

    Chebyshev Polynomial Approximation for Distributed Signal Processing

    Get PDF
    Unions of graph Fourier multipliers are an important class of linear operators for processing signals defined on graphs. We present a novel method to efficiently distribute the application of these operators to the high-dimensional signals collected by sensor networks. The proposed method features approximations of the graph Fourier multipliers by shifted Chebyshev polynomials, whose recurrence relations make them readily amenable to distributed computation. We demonstrate how the proposed method can be used in a distributed denoising task, and show that the communication requirements of the method scale gracefully with the size of the network.Comment: 8 pages, 5 figures, to appear in the Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), June, 2011, Barcelona, Spai

    Discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. A discrete Lawson correspondence

    Full text link
    The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an isometry in the following sense: it preserves the metric coefficients introduced previously by Bobenko and Suris for isothermic nets. Exactly as in the smooth case, this is a correspondence between nets with the same Lax matrices, and the immersion formulas also coincide with the smooth case.Comment: 13 page

    The Local Dark Matter Density from SDSS-SEGUE G-dwarfs

    Get PDF
    We derive the local dark matter density by applying the integrated Jeans equation method from Silverwood et al. (2016) to SDSS-SEGUE G-dwarf data processed and presented by B\"udenbender et al. (2015). We use the MultiNest Bayesian nested sampling software to fit a model for the baryon distribution, dark matter and tracer stars, including a model for the 'tilt term' that couples the vertical and radial motions, to the data. The α\alpha-young population from B\"udenbender et al. (2015) yields the most reliable result of ρDM=0.460.09+0.07GeVcm3=0.0120.002+0.001Mpc3\rho_{\rm DM} = 0.46^{+0.07}_{-0.09}\, {{\rm GeV\, cm}^{-3}} = 0.012^{+0.001}_{-0.002}\, {{\rm M}_\odot \, {\rm pc}^{-3}}. Our analyses yield inconsistent results for the α\alpha-young and α\alpha-old data, pointing to problems in the tilt term and its modelling, the data itself, the assumption of a flat rotation curve, or the effects of disequilibria.Comment: 17 pages, 10 figures, submitted to MNRA

    A non-parametric method for measuring the local dark matter density

    Get PDF
    We present a new method for determining the local dark matter density using kinematic data for a population of tracer stars. The Jeans equation in the zz-direction is integrated to yield an equation that gives the velocity dispersion as a function of the total mass density, tracer density, and the tilt term that describes the coupling of vertical and radial motions. We then fit a dark matter mass profile to tracer density and velocity dispersion data to derive credible regions on the vertical dark matter density profile. Our method avoids numerical differentiation, leading to lower numerical noise, and is able to deal with the tilt term while remaining one dimensional. In this study we present the method and perform initial tests on idealised mock data. We also demonstrate the importance of dealing with the tilt term for tracers that sample 1\gtrsim 1 kpc above the disc plane. If ignored, this results in a systematic underestimation of the dark matter density.Comment: V2: Improved tracer density description; increased number of mocks to explore outliers; corrected sign error in the (R, z) velocity dispersion; main conclusions unchanged. 19 pages, 14 figure

    RKKY and magnetic field interactions in coupled Kondo quantum dots

    Full text link
    We investigate theoretically the transport properties of two independent artificial Kondo impurities. They are coupled together via a tunable Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction. For strong enough antiferromagnetic RKKY interaction, the impurity density of states increases with the applied in-plane magnetic field. This effect can be used to distinguish between antiferromagnetic and ferromagnetic RKKY interactions. These results may be relevant to explain some features of recent experiments by Craig et al. (cond-mat/0404213).Comment: 4 pages, 3 figure

    Cyclic and ruled Lagrangian surfaces in complex Euclidean space

    Full text link
    We study those Lagrangian surfaces in complex Euclidean space which are foliated by circles or by straight lines. The former, which we call cyclic, come in three types, each one being described by means of, respectively, a planar curve, a Legendrian curve of the 3-sphere or a Legendrian curve of the anti de Sitter 3-space. We also describe ruled Lagrangian surfaces. Finally we characterize those cyclic and ruled Lagrangian surfaces which are solutions to the self-similar equation of the Mean Curvature Flow. Finally, we give a partial result in the case of Hamiltonian stationary cyclic surfaces

    Fatty acid bioconversion in harpacticoid copepods in a changing environment : a transcriptomic approach

    Get PDF
    By 2100, global warming is predicted to significantly reduce the capacity of marine primary producers for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. Primary consumers such as harpacticoid copepods (Crustacea) might mitigate the resulting adverse effects on the food web by increased LC-PUFA bioconversion. Here, we present a high-quality de novo transcriptome assembly of the copepodPlatychelipus littoralis, exposed to changes in both temperature (+3 degrees C) and dietary LC-PUFA availability. Using this transcriptome, we detected multiple transcripts putatively coding for LC-PUFA-bioconverting front-end fatty acid (FA) desaturases and elongases, and performed phylogenetic analyses to identify their relationship with sequences of other (crustacean) taxa. While temperature affected the absolute FA concentrations in copepods, LC-PUFA levels remained unaltered even when copepods were fed an LC-PUFA-deficient diet. While this suggests plasticity of LC-PUFA bioconversion withinP. littoralis, none of the putative front-end desaturase or elongase transcripts was differentially expressed under the applied treatments. Nevertheless, the transcriptome presented here provides a sound basis for future ecophysiological research on harpacticoid copepods. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'

    Self-pulsation dynamics in narrow stripe semiconductor lasers

    Get PDF
    In this paper, we address the physical origin of self-pulsation in narrow stripe edge emitting semiconductor lasers. We present both experimental time-averaged polarization-resolved near-field measurements performed with a charged-coupled device camera and picosecond time resolved near-field measurements performed with a streak camera. These results demonstrate dynamic spatial-hole burning during pulse formation and evolution. We conclude from these experimental results that the dominant process which drives the self-pulsation in this type of laser diode is carrier induced effective refractive index change induced by the spatial-hole burning

    Galaxies going MAD: The Galaxy-Finder Comparison Project

    Full text link
    With the ever increasing size and complexity of fully self-consistent simulations of galaxy formation within the framework of the cosmic web, the demands upon object finders for these simulations has simultaneously grown. To this extent we initiated the Halo Finder Comparison Project that gathered together all the experts in the field and has so far led to two comparison papers, one for dark matter field haloes (Knebe et al. 2011), and one for dark matter subhaloes (Onions et al. 2012). However, as state-of-the-art simulation codes are perfectly capable of not only following the formation and evolution of dark matter but also account for baryonic physics (e.g. hydrodynamics, star formation, feedback) object finders should also be capable of taking these additional processes into consideration. Here we report on a comparison of codes as applied to the Constrained Local UniversE Simulation (CLUES) of the formation of the Local Group which incorporates much of the physics relevant for galaxy formation. We compare both the properties of the three main galaxies in the simulation (representing the MW, M31, and M33) as well as their satellite populations for a variety of halo finders ranging from phase-space to velocity-space to spherical overdensity based codes, including also a mere baryonic object finder. We obtain agreement amongst codes comparable to (if not better than) our previous comparisons, at least for the total, dark, and stellar components of the objects. However, the diffuse gas content of the haloes shows great disparity, especially for low-mass satellite galaxies. This is primarily due to differences in the treatment of the thermal energy during the unbinding procedure. We acknowledge that the handling of gas in halo finders is something that needs to be dealt with carefully, and the precise treatment may depend sensitively upon the scientific problem being studied.Comment: 14 interesting pages, 17 beautiful figures, and 2 informative tables accepted for publication in MNRAS (matches published version
    corecore