7,014 research outputs found

    Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    Get PDF
    Objectives: To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Methods: Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30mAs) (step 2). Standard intravenously enhanced CT (180mAs) was performed after indeterminate LDCT (step 3). Results: No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. Conclusions: The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast medi

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Lymph Node Biopsy Specimens and Diagnosis of Cat-scratch Disease

    Get PDF
    Histologic analysis of lymph node biopsy specimens may verify diagnosis of this disease

    Integrating terrestrial and canopy laser scanning for comprehensive analysis of large old trees: Implications for single tree and biodiversity research

    Get PDF
    Large old trees provide multiple ecosystem services and contribute disproportionately to forest biomass and biodiversity. Yet their canopies remain among the least‐explored terrestrial habitats, despite their structural influence on key ecological processes such as light interception, moisture regulation, carbon storage and habitat formation. While terrestrial laser scanning (TLS) captures tree structure primarily from the ground, it struggles with occlusion and reduced precision in dense upper canopies, limiting information on fine‐scale branches and canopy vegetation. To address this, we introduce canopy laser scanning (CLS). We lifted a high‐end laser scanner into the canopy of six large, old trees by using scaffolding or climbers. Four trees are in diverse tropical rainforests in Colombia, Brazil and Peru and have large complex crowns with dense foliage. Two ‘giant’ trees stand out in Tasmania's wet, temperate eucalypt forests. Combining canopy and terrestrial scans resulted in a consistent high point cloud quality. The combined point clouds exhibited uniform point densities throughout the entire tree (downsampled to 1 cm), enabling a thorough examination of both the tree structure and its associated vegetation. Quantitative Structure Models (QSMs) showed, on average, a 20% increase (compared to TLS) in estimated branch volume and length, particularly concentrated in the upper crown region. We identified key epiphytic groups for a 5 × 5 × 5 m3 subset of a tree. Our results show that CLS improves point cloud precision and reduces occlusion, enabling more accurate assessments of tree architecture and canopy biodiversity. Where feasible, this advancement creates new opportunities for 3D modelling of microhabitats, estimating aboveground carbon stocks, monitoring species and studying ecological dynamics

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at √s = 13 TeV

    Get PDF
    Four-lepton production in proton-proton collisions, pp -> (Z/gamma*)(Z/gamma*) -> 4l, where l = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The ZZ production cross section, sigma(pp -> ZZ) = 17.2 +/- 0.5 (stat) +/- 0.7 (syst) +/- 0.4 (theo) +/- 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 4l) = 4.83(-0.22)(+0.23) (stat)(-0.29)(+0.32) (syst) +/- 0.08 (theo) +/- 0.12(lumi) x 10(-6) for events with a four-lepton invariant mass in the range 80 4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ. couplings at 95% confidence level: -0.0012 < f(4)(Z) < 0.0010, -0.0010 < f(5)(Z) < 0.0013, -0.0012 < f(4)(gamma) < 0.0013, -0.0012 < f(5)(gamma) < 0.0013
    corecore