22 research outputs found
SIRT1 activation mediates heat-induced survival of UVB damaged Keratinocytes
Background Exposure to heat stress after UVB irradiation induces a reduction of apoptosis, resulting in survival of DNA damaged human keratinocytes. This heat-mediated evasion of apoptosis appears to be mediated by activation of SIRT1 and inactivation of p53 signalling. In this study, we assessed the role of SIRT1 in the inactivation of p53 signalling and impairment of DNA damage response in UVB plus heat exposed keratinocytes. Results Activation of SIRT1 after multiple UVB plus heat exposures resulted in increased p53 deacetylation at K382, which is known to affect its binding to specific target genes. Accordingly, we noted decreased apoptosis and down regulation of the p53 targeted pro-apoptotic gene BAX and the DNA repair genes ERCC1 and XPC after UVB plus heat treatments. In addition, UVB plus heat induced increased expression of the cell survival gene Survivin and the proliferation marker Ki67. Notably, keratinocytes exposed to UVB plus heat in the presence of the SIRT1 inhibitor, Ex-527, showed a similar phenotype to those exposed to UV alone; i.e. an increase in p53 acetylation, increased apoptosis and low levels of Survivin. Conclusion This study demonstrate that heat-induced SIRT1 activation mediates survival of DNA damaged keratinocytes through deacetylation of p53 after exposure to UVB plus heat
Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo
Background: UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exposure to UV and heat needs to be clearly addressed in human epidermal cells. Methods: In this study, we determined the effects of repeated UVB exposure 1kJ/m2 followed by heat (39°C) to human keratinocytes. Normal human ex vivo skin models and primary keratinocytes (NHEK) were exposed once a day to UVB and/or heat stress for four consecutive days. Cells were then assessed for changes in proliferation, apoptosis and gene expression at 2days post-exposure, to determine the cumulative and persistent effects of UV and/or heat in skin keratinocytes. Results: Using ex vivo skin models and primary keratinocytes in vitro, we showed that UVB plus heat treated keratinocytes exhibit persistent DNA damage, as observed with UVB alone. However, we found that apoptosis was significantly reduced in UVB plus heat treated samples. Immunohistochemical and whole genome transcription analysis showed that multiple UVB plus heat exposures induced inactivation of the p53-mediated stress response. Furthermore, we demonstrated that repeated exposure to UV plus heat induced SIRT1 expression and a decrease in acetylated p53 in keratinocytes, which is consistent with the significant downregulation of p53-regulated pro-apoptotic and DNA damage repair genes in these cells. Conclusion: Our results suggest that UVB-induced p53-mediated cell cycle arrest and apoptosis are reduced in the presence of heat stress, leading to increased survival of DNA damaged cells. Thus, exposure to UVB and heat stress may act synergistically to allow survival of damaged cells, which could have implications for initiation skin carcinogenesis. © 2016 The Author(s)
Développement et caractérisation d'un modèle murin du syndrome de Netherton (vers l'identification de cibles thérapeutiques)
TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF
Pregnancy and thrombosis: Adrenal vein thrombosis. A retrospective descriptive study of 14 cases
International audienc
Epicutaneous immunotherapy with peanut directly targets Langerhans cells in human skin
Corneodesmosomal Cadherins Are Preferential Targets of Stratum Corneum Trypsin- and Chymotrypsin-like Hyperactivity in Netherton Syndrome
SPINK5 (serine protease inhibitor Kazal-type 5), encoding the protease inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor), is the defective gene in Netherton syndrome (NS), a severe inherited keratinizing disorder. We have recently demonstrated epidermal protease hyperactivity in Spink5−/− mice resulting in desmosomal protein degradation. Herein, we investigated the molecular mechanism underlying the epidermal defect in 15 patients with NS. We demonstrated that, in a majority of patients, desmoglein 1 (Dsg1) and desmocollin 1 (Dsc1) were dramatically reduced in the upper most living layers of the epidermis. These defects were associated with premature degradation of corneodesmosomes. Stratum corneum tryptic enzyme (SCTE)-like and stratum corneum chymotryptic enzyme (SCCE)-like activities were increased, suggesting that these proteases participate in the premature degradation of corneodesmosomal cadherins. SCTE and SCCE expression was extended to the cell layers where Dsg1 and Dsc1 immunostaining was reduced. In contrast, a subset of six patients with normal epidermal protease activity or residual LEKTI expression displayed apparently normal cadherin expression and less severe disease manifestations. This suggests a degree of correlation between cadherin degradation and clinical severity. This work further supports the implication of premature corneodesmosomal cadherin degradation in the pathogenesis of NS and provides evidence for additional factors playing a role in disease expression
Additional file 3: Figure S3. of Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo
Exposure to UVB plus heat induced a significant decrease in acetylated p53 levels in NHEK and in skin models. Immunohistochemical staining of CPD (red), p53-a382 or SIRT1-p (green) and DAPI (blue) in untreated or UVB and/or heat treated NHEK. Cells co-expressing p53-a382/CPD are also indicated by green arrows. Scale bar (white line) =100Â Îźm. (JPG 304 kb
Additional file 2: Figure S2. of Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo
(a) Immunohistochemical staining of SIRT1-p (green), total SIRT1 (red) and DAPI (nucleus, blue) in skin samples or primary keratinocytes that were either untreated, or exposed to heat, UVB or UVB plus heat. Broken lines denote the epidermal/dermal border. Scale bar (white line) =100 μm. Inset images are enlarged view of SIRT1/SIRT1-p positive cells, which are also indicated by red arrows. (b) Bar graphs of mean ± SD percent keratinocytes carrying phosphorylated and normal SIRT1 protein in ex vivo skin. (JPG 367 kb
