306 research outputs found
Whitham's equations for modulated roll-waves in shallow flows
This paper is concerned with the detailed behaviour of roll-waves undergoing
a low-frequency perturbation. We rst derive the so-called Whitham's averaged
modulation equations and relate the well-posedness of this set of equations to
the spectral stability problem in the small Floquet-number limit. We then fully
validate such a system and in particular, we are able to construct solutions to
the shallow water equations in the neighbourhood of modulated roll-waves proles
that exist for asymptotically large time
Nonlinear stability of viscous roll waves
Extending results of Oh--Zumbrun and Johnson--Zumbrun for parabolic
conservation laws, we show that spectral stability implies nonlinear stability
for spatially periodic viscous roll wave solutions of the one-dimensional St.
Venant equations for shallow water flow down an inclined ramp. The main new
issues to be overcome are incomplete parabolicity and the nonconservative form
of the equations, which leads to undifferentiated quadratic source terms that
cannot be handled using the estimates of the conservative case. The first is
resolved by treating the equations in the more favorable Lagrangian
coordinates, for which one can obtain large-amplitude nonlinear damping
estimates similar to those carried out by Mascia--Zumbrun in the related shock
wave case, assuming only symmetrizability of the hyperbolic part. The second is
resolved by the observation that, similarly as in the relaxation and detonation
cases, sources occurring in nonconservative components experience greater than
expected decay, comparable to that experienced by a differentiated source.Comment: Revision includes new appendix containing full proof of nonlinear
damping estimate. Minor mathematical typos fixed throughout, and more
complete connection to Whitham averaged system added. 42 page
Whitham's Modulation Equations and Stability of Periodic Wave Solutions of the Korteweg-de Vries-Kuramoto-Sivashinsky Equation
International audienceWe study the spectral stability of periodic wave trains of the Korteweg-de Vries-Kuramoto-Sivashinsky equation which are, among many other applications, often used to describe the evolution of a thin liquid film flowing down an inclined ramp. More precisely, we show that the formal slow modulation approximation resulting in the Whitham system accurately describes the spectral stability to side-band perturbations. Here, we use a direct Bloch expansion method and spectral perturbation analysis instead of Evans function computations. We first establish, in our context, the now usual connection between first order expansion of eigenvalues bifurcating from the origin (both eigenvalue 0 and Floquet parameter 0) and the first order Whitham's modulation system: the hyperbolicity of such a system provides a necessary condition of spectral stability. Under a condition of strict hyperbolicity, we show that eigenvalues are indeed analytic in the neighborhood of the origin and that their expansion up to second order is connected to a viscous correction of the Whitham's equations. This, in turn, provides new stability criteria. Finally, we study the Korteweg-de Vries limit: in this case the domain of validity of the previous expansion shrinks to nothing and a new modulation theory is needed. The new modulation system consists in the Korteweg-de Vries modulation equations supplemented with a source term: relaxation limit in such a system provides in turn some stability criteria
Whitham Averaged Equations and Modulational Stability of Periodic Traveling Waves of a Hyperbolic-Parabolic Balance Law
In this note, we report on recent findings concerning the spectral and
nonlinear stability of periodic traveling wave solutions of
hyperbolic-parabolic systems of balance laws, as applied to the St. Venant
equations of shallow water flow down an incline. We begin by introducing a
natural set of spectral stability assumptions, motivated by considerations from
the Whitham averaged equations, and outline the recent proof yielding nonlinear
stability under these conditions. We then turn to an analytical and numerical
investigation of the verification of these spectral stability assumptions.
While spectral instability is shown analytically to hold in both the Hopf and
homoclinic limits, our numerical studies indicates spectrally stable periodic
solutions of intermediate period. A mechanism for this moderate-amplitude
stabilization is proposed in terms of numerically observed "metastability" of
the the limiting homoclinic orbits.Comment: 27 pages, 5 figures. Minor changes throughou
Nonlocalized modulation of periodic reaction diffusion waves: Nonlinear stability
By a refinement of the technique used by Johnson and Zumbrun to show
stability under localized perturbations, we show that spectral stability
implies nonlinear modulational stability of periodic traveling-wave solutions
of reaction diffusion systems under small perturbations consisting of a
nonlocalized modulation plus a localized perturbation. The main new ingredient
is a detailed analysis of linear behavior under modulational data , where is the background profile and is the initial
modulatio
- …
