2,061 research outputs found
Analysis of multi-sensor data, 12 September - 11 December 1968
Analysis of multi-sensor data obtained by Earth Resources Aircraft Progra
The Onset of Planet Formation in Brown Dwarf Disks
The onset of planet formation in protoplanetary disks is marked by the growth
and crystallization of sub-micron-sized dust grains accompanied by dust
settling toward the disk mid-plane. Here we present infrared spectra of disks
around brown dwarfs and brown dwarf candidates. We show that all three
processes occur in such cool disks in a way similar or identical to that in
disks around low- and intermediate-mass stars. These results indicate that the
onset of planet formation extends to disks around brown dwarfs, suggesting that
planet formation is a robust process occurring in most young circumstellar
disks.Comment: Published in Science 2005, vol 310, 834; 3 pages in final format, 4
figures + 8 pages Supporting Online Material. For final typeset, see
http://www.sciencemag.org/cgi/content/abstract/310/5749/834?eto
The First Detailed Look at a Brown Dwarf Disk
The combination of mid-infrared and recent submm/mm measurements allows us to
set up the first comprehensive spectral energy distribution (SED) of the
circumstellar material around a young Brown Dwarf. Simple arguments suggest
that the dust is distributed in the form of a disk. We compare basic models to
explore the disk parameters. The modeling shows that a flat disk geometry fits
well the observations. A flared disk explains the SED only if it has a
puffed-up inner rim and an inner gap much larger than the dust sublimation
radius. Similarities and differences with disks around T Tauri stars are
discussed.Comment: 11 pages, 1 figur
Remnant gas in evolved circumstellar disks: Herschel PACS observations of 10-100 Myr old disk systems
We present Herschel PACS spectroscopy of the [OI] 63 micron gas-line for
three circumstellar disk systems showing signs of significant disk evolution
and/or planet formation: HR 8799, HD 377 and RX J1852.3-3700. [OI] is
undetected toward HR 8799 and HD 377 with 3 sigma upper limits of 6.8 x 10^-18
W m^-2 and 9.9 x 10^-18 W m^-2 respectively. We find an [OI] detection for RX
J1852.3-3700 at 12.3 +- 1.8 x 10^-18 W m^-2. We use thermo-chemical disk models
to model the gas emission, using constraints on the [OI] 63 micron, and
ancillary data to derive gas mass upper limits and constrain gas-to-dust
ratios. For HD 377 and HR 8799, we find 3 sigma upper limits on the gas mass of
0.1-20 Mearth. For RX J1852.3-3700, we find two distinct disk scenarios that
could explain the detection of [OI] 63 micron and CO(2-1) upper limits reported
from the literature: (i) a large disk with gas co-located with the dust (16-500
AU), resulting in a large tenuous disk with ~16 Mearth of gas, or (ii) an
optically thick gas disk, truncated at ~70 AU, with a gas mass of 150 Mearth.
We discuss the implications of these results for the formation and evolution of
planets in these three systems.Comment: Accepted for publication in ApJ, 8 pages ApJ style (incl.
references), 2 figures, 4 table
Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data
State of the art PRA methods, i.e. Dynamic PRA
(DPRA) methodologies, largely employ system
simulator codes to accurately model system dynamics.
Typically, these system simulator codes (e.g., RELAP5 )
are coupled with other codes (e.g., ADAPT,
RAVEN that monitor and control the simulation. The
latter codes, in particular, introduce both deterministic
(e.g., system control logic, operating procedures) and
stochastic (e.g., component failures, variable uncertainties)
elements into the simulation. A typical DPRA analysis is
performed by:
1. Sampling values of a set of parameters from the
uncertainty space of interest
2. Simulating the system behavior for that specific set of
parameter values
3. Analyzing the set of simulation runs
4. Visualizing the correlations between parameter values
and simulation outcome
Step 1 is typically performed by randomly sampling
from a given distribution (i.e., Monte-Carlo) or selecting
such parameter values as inputs from the user (i.e.,
Dynamic Event Tre
Herschel evidence for disk flattening or gas depletion in transitional disks
Transitional disks are protoplanetary disks characterized by reduced near-
and mid-infrared emission with respect to full disks. This characteristic
spectral energy distribution indicates the presence of an optically thin inner
cavity within the dust disk believed to mark the disappearance of the
primordial massive disk. We present new Herschel Space Observatory PACS spectra
of [OI] 63 micron for 21 transitional disks. Our survey complements the larger
Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by
quadrupling the number of transitional disks observed with PACS at this
wavelength. [OI] 63 micron traces material in the outer regions of the disk,
beyond the inner cavity of most transitional disks. We find that transitional
disks have [OI] 63 micron line luminosities two times fainter than their full
disk counterparts. We self consistently determine various stellar properties
(e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk
dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we
find no correlations that can explain the lower [OI] 63 micron line
luminosities in transitional disks. Using a grid of thermo-chemical
protoplanetary disk models, we conclude that either transitional disks are less
flared than full disks or they possess lower gas-to-dust ratios due to a
depletion of gas mass. This result suggests that transitional disks are more
evolved than their full disk counterparts, possibly even at large radii.Comment: Accepted for publication in ApJ; 52 pages, 16 figures, 8 table
Anachronistic Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66
We present ATCA interferometric observations of the old (13 Myr), nearby
(86pc) classical T Tauri star, PDS 66. Unresolved 3 and 12 mm continuum
emission is detected towards PDS 66, and upper limits are derived for the 3 and
6 cm flux densities. The mm-wave data show a spectral slope flatter than that
expected for ISM-sized dust particles, which is evidence of grain growth. We
also present HST/NICMOS 1.1 micron PSF-subtracted coronagraphic imaging of PDS
66. The HST observations reveal a bilaterally symmetric circumstellar region of
dust scattering about 0.32% of the central starlight, declining radially in
surface brightness. The light-scattering disk of material is inclined 32
degrees from face-on, and extends to a radius of 170 AU. These data are
combined with published optical and longer wavelength observations to make
qualitative comparisons between the median Taurus and PDS 66 spectral energy
distributions (SEDs). By comparing the near-infrared emission to a simple
model, we determine that the location of the inner disk radius is consistent
with the dust sublimation radius (1400 K at 0.1 AU). We place constraints on
the total disk mass using a flat-disk model and find that it is probably too
low to form gas giant planets according to current models. Despite the fact
that PDS 66 is much older than a typical classical T Tauri star (< 5 Myr), its
physical properties are not much different.Comment: 31 pages, 7 figure
- …
