824 research outputs found
Deconfinement transition and dimensional crossover in the Bechgaard-Fabre salts: pressure- and temperature-dependent optical investigations
The infrared response of the organic conductor (TMTSF)PF and the Mott
insulator (TMTTF)PF are investigated as a function of temperature and
pressure and for the polarization parallel and perpendicular to the molecular
stacks. By applying external pressure on (TMTTF)PF, the Mott gap
rapidly diminishes until the deconfinement transition occurs when the gap
energy is approximately twice the interchain transfer integral. In its
deconfined state (TMTTF)PF exhibits a crossover from a
quasi-one-dimensional to a higher-dimensional metal upon reducing the
temperature. For (TMTSF)PF this dimensional crossover is observed
either with increase in external pressure or with decrease in temperature. We
quantitatively determine the dimensional crossover line in the
pressure-temperature diagram based on the degree of coherence in the optical
response perpendicular to the molecular stacks.Comment: 12 pages, 15 figure
Quantum noise in the Josephson charge qubit
We study decoherence of the Josephson charge qubit by measuring energy
relaxation and dephasing with help of the single-shot readout. We found that
the dominant energy relaxation process is a spontaneous emission induced by
quantum noise coupled to the charge degree of freedom. Spectral density of the
noise at high frequencies is roughly proportional to the qubit excitation
energy.Comment: Submitted to Phys. Rev. Letter
Dynamics of coupled spins in the white- and quantum-noise regime
We study the dynamics of dissipative spins for general spin-spin coupling. We
investigate the population dynamics and relaxation of the purity in the white
noise regime, in which exact results are available. Inter alia, we find
distinct reduction of decoherence and slowdown of purity decay around
degeneracy points. We also determine in analytic form the one-phonon exchange
contribution to decoherence and relaxation in the ohmic quantum noise regime
valid down to zero temperature.Comment: 8 pages, 5 figure
Parametric coupling for superconducting qubits
We propose a scheme to couple two superconducting charge or flux qubits
biased at their symmetry points with unequal energy splittings. Modulating the
coupling constant between two qubits at the sum or difference of their two
frequencies allows to bring them into resonance in the rotating frame.
Switching on and off the modulation amounts to switching on and off the
coupling which can be realized at nanosecond speed. We discuss various physical
implementations of this idea, and find that our scheme can lead to rapid
operation of a two-qubit gate.Comment: 6 page
Electromagnetically induced transparency on a single artificial atom
We present experimental observation of electromagnetically induced
transparency (EIT) on a single macroscopic artificial "atom" (superconducting
quantum system) coupled to open 1D space of a transmission line. Unlike in a
optical media with many atoms, the single atom EIT in 1D space is revealed in
suppression of reflection of electromagnetic waves, rather than absorption. The
observed almost 100 % modulation of the reflection and transmission of
propagating microwaves demonstrates full controllability of individual
artificial atoms and a possibility to manipulate the atomic states. The system
can be used as a switchable mirror of microwaves and opens a good perspective
for its applications in photonic quantum information processing and other
fields
Controlling Single Microwave Photons:A New Frontier in Microwave Engineering
In microwave engineering we are accustomed to thinking of the electromagnetic energy in our circuits as transmitted by waves. Now, new technologies are being developed that deal with signals at the level of single photons where this is no longer valid. Here we describe some of the challenges and opportunities in this rapidly developing field
- …
